重生之“我打数据结构,真的假的?”--3.栈和队列

发布于:2024-07-26 ⋅ 阅读:(250) ⋅ 点赞:(0)

1.栈和队列的基本概念

1.1 栈

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

1.2 初始化及功能实现

#include"stack.h"

typedef int datatype;
typedef struct stack
{
	datatype* a;
	int top;
	int capacity;
}ST;

void InitST(ST* sl)
{
	assert(sl);                  //sl不为NULL
	sl->a = NULL;
	sl->top = 0;
	sl->capacity = 0;
}//初始化

void STpush(ST* sl, int data)
{
	assert(sl);
	if (sl->top == sl->capacity)
	{
		int newcapacity = sl->capacity == 0 ? 2 : sl->capacity * 2;
		datatype* tmp = (datatype*)realloc(sl->a, newcapacity * sizeof(datatype));
		sl->a = tmp;
		sl->capacity = newcapacity;
	}
	sl->a[sl->top] = data;
	sl->top++;
}//插入
void STpop(ST* sl)
{
	assert(sl);                //!!!!!!判断指针是否为空,《《《《判断的是栈是否存在》》》》》》          
	assert(!STempty(sl));      //!!!!!!!!!与上文不同,《《《《判断的是栈是否为空》》》》》》
		sl->top--;
}//删除

datatype STtop(ST* sl)
{
	assert(sl);
	assert(!STempty(sl));
	return sl->a[sl->top-1];
}//取栈顶

void STdestroy(ST* sl)
{
	assert(sl);
	free(sl->a);
	sl->a = NULL;
	sl->top = sl->capacity = 0;
}

bool STempty(ST* sl)
{
	assert(sl);
	return sl->top == 0;
}

1.3 括号匹配问题

. - 力扣(LeetCode)

思路:

1.设立一个栈,依次从s中取出元素,如果为左括号类型 则入栈

2.否则取栈顶元素(如果栈为空则直接返回false)如果匹配

则删除栈顶元素,如果不匹配,返回false

3.s访问完后,如果栈为空,则返回true,否则返回false

bool isValid(char* s) {

typedef struct stack
{
	char * a;
	int top;
	int capacity;
}ST;

bool STempty(ST* sl)
{
	assert(sl);
	return sl->top == 0;
}
void InitST(ST* sl)
{
	assert(sl);                  //sl不为NULL
	sl->a = NULL;
	sl->top = 0;
	sl->capacity = 0;
}

void STpush(ST* sl, char data)
{
	assert(sl);
	if (sl->top == sl->capacity)
	{
		int newcapacity = sl->capacity == 0 ? 2 : sl->capacity * 2;
		char* tmp = (char*)realloc(sl->a, newcapacity * sizeof(char));
		sl->a = tmp;
		sl->capacity = newcapacity;
	}
	sl->a[sl->top] = data;
	sl->top++;
}
void STpop(ST* sl)
{
	assert(sl);                //!!!!!!判断指针是否为空,《《《《判断的是栈是否存在》》》》》》          
	assert(!STempty(sl));      //!!!!!!!!!与上文不同,《《《《判断的是栈是否为空》》》》》》
		sl->top--;
}

char STtop(ST* sl)
{
	assert(sl);
	assert(!STempty(sl));
	return sl->a[sl->top-1];
}

void STdestroy(ST* sl)
{
	assert(sl);
	free(sl->a);
	sl->a = NULL;
	sl->top = sl->capacity = 0;
}

    int i=0;
    char j;
    char k;
    ST L;
    ST R;
    InitST(&L);
    InitST(&R);
    while(s[i]!='\0')
    {
     if(s[i]=='('||s[i]=='['||s[i]=='{')
    {
        STpush(&L, s[i]);
        i++;
    }
     else
     {
       if(STempty(&L))
       return false;
      if((STtop(&L)=='('&&s[i]==')')||(STtop(&L)=='{'&&s[i]=='}')||(STtop(&L)=='['&&s[i]==']'))
       {
        STpop(&L);
        i++;
       }
      else
      return false;
     }
    }
   if(STempty(&L))
   return true;
   else
   return false;

}

2.队列 

2.1 概念

队列的顺序实现是指分配一块连续的存储单元存放队列中的元素,并附设两个指针:队头指针 front 指向队头元素,队尾指针 rear 指向队尾元素

2.2 初始化及功能实现

typedef int datatype;
typedef struct Queuenode
{
	datatype data;
	struct Queuenode * next;
}Qnode;

typedef struct QT
{
	Qnode* head;
	Qnode* tail;
	int size;
}QT;


void QueueInit(QT* sl)
{
	assert(sl);
	sl->head = NULL;
	sl->tail = NULL;
	sl->size = 0;
}

bool Queueempty(QT* sl)
{
	assert(sl);
	return sl->head ==NULL;
}

void Queuepush(QT* sl, int x)
{
	assert(sl);
	Qnode* newnode = (Qnode*)malloc(sizeof(Qnode));
	newnode->next = NULL;
	newnode->data = x;
	if (Queueempty(sl))
	{
		sl->head = newnode;
		sl->tail = newnode;
	}
	else
	{
		sl->tail->next = newnode;
		sl->tail = newnode;
	}
	sl->size++;
}

void Queuepop(QT* sl)
{
	assert(sl);
	assert(!Queueempty(sl));
	Qnode* next = sl->head->next;
	free(sl->head);
	sl->head = next;
	sl->size--;
}

int Queuetop(QT* sl)
{
	assert(sl);
	assert(!Queueempty(sl));
	return sl->head->data;
}


void Queuedestroy(QT* sl)
{
	assert(sl);
	while (!Queueempty(sl))
		Queuepop(sl);
	sl->head = sl->tail = NULL;
	sl->size = 0;
}

2.3 循环队列 

. - 力扣(LeetCode)

typedef struct Queuenode
{
	int data;
	struct Queuenode * next;
}Qnode;

typedef struct {
Qnode* head;
Qnode* tail;
int size;
int flag;
} MyCircularQueue;

MyCircularQueue* myCircularQueueCreate(int k) {
     MyCircularQueue* sl=NULL;
     sl=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
     sl->head = NULL;
     sl->tail = NULL;
     sl->size = 0;
     sl->flag = k;
     return sl;
}

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    return obj->head ==NULL;
}

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    if(obj->size>=obj->flag)
    return false;
    Qnode* newnode = (Qnode*)malloc(sizeof(Qnode));
    newnode->next = NULL;
    newnode->data = value;
    if(myCircularQueueIsEmpty(obj))
    {
	obj->head = newnode;
	obj->tail = newnode;
    obj->tail->next=obj->head;
    obj->head->next=obj->tail;
    }
   else
   { 
	obj->tail->next = newnode;
	obj->tail = newnode;
    if(obj->head->next==obj->head)
    obj->head->next=obj->tail;
    obj->tail->next=obj->head;
    }
obj->size++;
return true;

}

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    
  if(myCircularQueueIsEmpty(obj))
  return false;
  else{
   if(obj->head!=obj->tail)
   {
     Qnode* next = obj->head->next;
     obj->tail->next=next;
    free(obj->head);
    obj->head = next;
    obj->size--;
   }
   else{
    free(obj->head);
     obj->head = obj->tail = NULL;
     obj->size = 0;
   }
  }
  return true;
}

int myCircularQueueFront(MyCircularQueue* obj) {
    int i=0;
    if(myCircularQueueIsEmpty(obj))
    return -1;
    else
    return obj->head->data;
}

int myCircularQueueRear(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    return -1;
    else
    return obj->tail->data;
}

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    return obj->size==obj->flag;
}

void myCircularQueueFree(MyCircularQueue* obj) {
   
    while (!myCircularQueueIsEmpty(obj))
	{
     Qnode* next = obj->head->next;
     obj->tail->next=next;
     if(obj->head!=obj->tail)
     { free(obj->head);
      obj->head = next;
      obj->size--;
     }
     else{
        obj->head = obj->tail = NULL;
        obj->size = 0;
        break;
     }
    }
    
}

3.用栈实现队列 

 . - 力扣(LeetCode)

 思路:

1.可以设立两个栈 p,q

(1)入队:将p中元素依次入栈q,再将函数传递的数据入栈q

(2)出队:将q中元素依次入栈p,再取q栈顶元素

typedef struct stack
{
	int * a;
	int top;
	int capacity;
}ST;

typedef struct {
ST* p;
ST* q;
} MyQueue;


MyQueue* myQueueCreate() 
{
    MyQueue*sl=NULL;
    sl=(MyQueue*)malloc(sizeof(MyQueue));
    sl->q=(ST*)malloc(sizeof(ST));
    sl->p=(ST*)malloc(sizeof(ST));
    sl->q->a=NULL;
    sl->q->top=0;
    sl->q->capacity=0;
    sl->p->a=NULL;
    sl->p->top=0;
    sl->p->capacity=0;
    return sl;
}

bool STempty(ST* sl)
{
	assert(sl);
	return sl->top == 0;
}

int STtop(ST* sl)
{
	assert(sl);
	assert(!STempty(sl));
    int i;
	i=sl->a[sl->top-1];
    return i;
}


void myQueuePush(MyQueue* obj, int x) {
    while(!STempty(obj->q))
    {
if (obj->p->top == obj->q->capacity)
{
	int newcapacity = obj->q->capacity == 0 ? 2 : obj->p->capacity * 2;
	int * tmp = (int*)realloc(obj->p->a, newcapacity * sizeof(int));
	obj->p->a = tmp;
	obj->p->capacity = newcapacity;
}
obj->p->a[obj->p->top] =STtop(obj->q) ;
obj->p->top++;
obj->q->top--;


    }
    if (obj->p->top == obj->p->capacity)
{
	int newcapacity = obj->p->capacity == 0 ? 2 : obj->p->capacity * 2;
	int * tmp = (int*)realloc(obj->p->a, newcapacity * sizeof(int));
	obj->p->a = tmp;
	obj->p->capacity = newcapacity;
}
obj->p->a[obj->p->top] = x;
obj->p->top++;
}

int myQueuePop(MyQueue* obj) {
    while(!STempty(obj->p))
    {
        if (obj->q->top == obj->q->capacity)
{
	int newcapacity = obj->q->capacity == 0 ? 2 : obj->q->capacity * 2;
	int * tmp = (int*)realloc(obj->q->a, newcapacity * sizeof(int));
	obj->q->a = tmp;
	obj->q->capacity = newcapacity;
}
obj->q->a[obj->q->top] =STtop(obj->p) ;
obj->q->top++;
obj->p->top--;
    }
    int i=STtop(obj->q);
    obj->q->top--;
    return i;
}

int myQueuePeek(MyQueue* obj) {
    while(!STempty(obj->p))
    {

   if (obj->q->top == obj->q->capacity)
{
	int newcapacity = obj->q->capacity == 0 ? 2 : obj->q->capacity * 2;
	int * tmp = (int*)realloc(obj->q->a, newcapacity * sizeof(int));
	obj->q->a = tmp;
	obj->q->capacity = newcapacity;
}
obj->q->a[obj->q->top] =STtop(obj->p) ;
obj->q->top++;
obj->p->top--;
    }
     int i=STtop(obj->q);
    return i;
}

bool myQueueEmpty(MyQueue* obj) {
    if(STempty(obj->p)&&STempty(obj->q))
    return true;
    else
    return false;
}

void myQueueFree(MyQueue* obj) {
    free(obj->p);
    free(obj->q);
}