力扣第二十五题——K个一组反转链表

发布于:2024-07-27 ⋅ 阅读:(45) ⋅ 点赞:(0)

内容介绍

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例 1:

输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]

示例 2:

输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]

提示:
  • 链表中的节点数目为 n
  • 1 <= k <= n <= 5000
  • 0 <= Node.val <= 1000

进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

完整代码

 class Solution {
    public ListNode reverseKGroup(ListNode head, int k) {
        ListNode hair = new ListNode(0);
        hair.next = head;
        ListNode pre = hair;

        while (head != null) {
            ListNode tail = pre;
            // 查看剩余部分长度是否大于等于 k
            for (int i = 0; i < k; ++i) {
                tail = tail.next;
                if (tail == null) {
                    return hair.next;
                }
            }
            ListNode nex = tail.next;
            ListNode[] reverse = myReverse(head, tail);
            head = reverse[0];
            tail = reverse[1];
            // 把子链表重新接回原链表
            pre.next = head;
            tail.next = nex;
            pre = tail;
            head = tail.next;
        }

        return hair.next;
    }

    public ListNode[] myReverse(ListNode head, ListNode tail) {
        ListNode prev = tail.next;
        ListNode p = head;
        while (prev != tail) {
            ListNode nex = p.next;
            p.next = prev;
            prev = p;
            p = nex;
        }
        return new ListNode[]{tail, head};
    }
}

思路详解

一、解决思路

  1. 辅助头节点:创建一个辅助头节点hair,其下一个节点指向原链表的头节点head。这样做的好处是在翻转链表的过程中,可以简化边界条件的处理。
  2. 分组检查:使用一个循环来检查链表中剩余的节点是否至少有 k 个,以决定是否进行翻转。
  3. 翻转链表:对于每一组 k 个节点,使用一个辅助函数myReverse来进行翻转。
  4. 重新连接:翻转后,需要将翻转的子链表重新连接到原链表中。

二、详细步骤

  1. 初始化辅助头节点

    ListNode hair = new ListNode(0);
    hair.next = head;
    ListNode pre = hair;
    

    这里pre节点用于在翻转后重新连接链表。

  2. 遍历链表

    while (head != null) {
    

    head不为空时,继续处理链表。

  3. 检查剩余节点数量

    ListNode tail = pre;
    for (int i = 0; i < k; ++i) {
        tail = tail.next;
        if (tail == null) {
            return hair.next;
        }
    }
    

    通过一个循环,检查从当前pre节点开始的 k 个节点是否存在。如果不足 k 个,则直接返回辅助头节点的下一个节点。

  4. 记录翻转后的子链表

    ListNode nex = tail.next;
    ListNode[] reverse = myReverse(head, tail);
    head = reverse[0];
    tail = reverse[1];
    

    myReverse函数翻转从headtail的子链表,并返回翻转后的头尾节点。

  5. 重新连接链表

    pre.next = head;
    tail.next = nex;
    pre = tail;
    head = tail.next;
    

    将翻转后的子链表连接回原链表,并更新prehead指针。

  6. 翻转函数

    public ListNode[] myReverse(ListNode head, ListNode tail) {
        ListNode prev = tail.next;
        ListNode p = head;
        while (prev != tail) {
            ListNode nex = p.next;
            p.next = prev;
            prev = p;
            p = nex;
        }
        return new ListNode[]{tail, head};
    }
    

    该函数通过迭代的方式翻转链表,直到p指向tail

四、返回结果

return hair.next;

最终返回辅助头节点的下一个节点,即翻转后的链表头节点。

通过以上步骤,我们可以实现每 k 个一组翻转链表的功能。该算法的时间复杂度为 O(n),空间复杂度为 O(1),其中 n 是链表中的节点数量。

知识点精炼

一、链表基本概念

  1. 链表是由一系列节点组成的数据结构,每个节点包含数据域和指针域。
  2. 链表的第一个节点称为头节点,最后一个节点的指针域为空。

二、K个一组翻转链表核心知识点

  1. 辅助头节点:引入辅助头节点简化边界条件处理,便于统一操作。
  2. 分组检查:通过循环检查链表剩余节点是否达到 k 个,以决定是否进行翻转。
  3. 链表翻转:使用迭代方法实现链表翻转,保持翻转过程中节点间的连接。
  4. 重新连接:翻转后的子链表需要重新连接到原链表中,保持链表的完整性。

三、关键步骤

  1. 初始化:创建辅助头节点,初始化前驱节点pre
  2. 遍历与检查:遍历链表,检查每组是否有 k 个节点。
  3. 翻转操作:对每组 k 个节点进行翻转,记录翻转后的头尾节点。
  4. 连接链表:将翻转后的子链表连接回原链表,并更新前驱节点和当前节点。

四、注意事项

  1. 边界条件:确保在节点数量不足 k 个时,不进行翻转操作。
  2. 指针更新:在翻转和连接操作中,正确更新指针,避免链表断裂。
  3. 辅助函数:编写清晰的辅助函数,简化主函数逻辑。

五、实际应用

  1. 链表操作:掌握 K 个一组翻转链表,提高链表操作能力。
  2. 算法思维:通过递归和迭代结合的方式,培养灵活的算法思维。