%%capture captured_output
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install mindnlp
!pip install jieba
%env HF_ENDPOINT=https://hf-mirror.com
import os
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn
from mindnlp.dataset import load_dataset
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy
imdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']
imdb_train.get_dataset_size()
import numpy as np
def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):
is_ascend = mindspore.get_context('device_target') == 'Ascend'
def tokenize(text):
if is_ascend:
tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
else:
tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)
return tokenized['input_ids'], tokenized['attention_mask']
if shuffle:
dataset = dataset.shuffle(batch_size)
dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")
if is_ascend:
dataset = dataset.batch(batch_size)
else:
dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
'attention_mask': (None, 0)})
return dataset
from mindnlp.transformers import GPTTokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')
special_tokens_dict = {
"bos_token": "<bos>",
"eos_token": "<eos>",
"pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)
imdb_train, imdb_val = imdb_train.split([0.7, 0.3])
dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)
dataset_val = process_dataset(imdb_val, gpt_tokenizer)
dataset_test = process_dataset(imdb_test, gpt_tokenizer)
next(dataset_train.create_tuple_iterator())
from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)
optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)
metric = Accuracy()
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)
trainer = Trainer(network=model, train_dataset=dataset_train,
eval_dataset=dataset_train, metrics=metric,
epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],
jit=False)
trainer.run(tgt_columns="labels")
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
代码解析
- 环境设置与库的安装:
- 卸载已有的
mindspore
版本并安装指定的2.2.14版本。
- 安装
mindnlp
和 jieba
等必要的库。
- 数据集加载:
- 使用
load_dataset
函数从 mindnlp
加载 IMDB 数据集,并分别获取训练集和测试集。
- 数据预处理:
process_dataset
函数用于分词、标签转换和批量处理,最终返回可以用于训练的数据集。
- 分词器配置:
- 使用
GPTTokenizer
从预训练模型加载分词器,并添加特殊的开始、结束和填充标记。
- 数据集划分:
- 将训练集划分为训练集和验证集,并使用处理函数进行处理。
- 模型和优化器定义:
- 加载基于GPT的序列分类模型,并定义Adam优化器和准确率指标。
- 训练与评估:
- 使用
Trainer
类进行模型训练,并使用 Evaluator
类在测试集上进行评估。设置了检查点回调函数以保存模型状态。