下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接:
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新2024/08/14)-CSDN博客文章浏览阅读14次。使用R语言,数据科学家和分析师不仅可以快速创建原型,还可以开发全功能的应用程序,供同事、客户或公众使用。这种能力为数据分析和可视化带来了全新的可能性。https://blog.csdn.net/2301_79425796/article/details/141187347欢迎订阅我们专栏
在数据科学中,数据的探索和可视化是分析的重要组成部分。R 语言提供了强大的工具来进行数据分析和可视化,其中 Shiny 包允许我们构建交互式的 Web 应用,使用户可以动态地探索数据。本文将详细介绍如何使用 Shiny 构建一个交互式的散点图应用,该应用允许用户选择鸢尾花数据集的不同变量进行可视化,并通过多种选项自定义图形。
1、准备工作
在开始之前,请确保你已经安装了以下 R 包:
shiny
: 用于构建交互式 Web 应用的核心包。bslib
: 提供主题支持,允许我们定制 Shiny 应用的外观。dplyr
: 一个用于数据操作的 R 包,使数据过滤和选择更加简洁和高效。ggplot2
: R 中最流行的数据可视化包,用于创建优美且灵活的图形。ggExtra
: 用于在ggplot2
图形上添加额外信息,如边际图。
可以通过运行以下命令来安装这些包:
install.packages(c("shiny", "bslib", "dplyr", "ggplot2", "ggExtra"))
2、鸢尾花数据集
鸢尾花数据集(iris
)是数据科学中常用的经典数据集之一。该数据集包含 150 条记录,每条记录代表一朵鸢尾花的测量数据。数据集包括四个数值变量(萼片长度、萼片宽度、花瓣长度和花瓣宽度)和一个分类变量(物种)。
3、构建 Shiny 应用
我们将分两个部分来构建这个应用:用户界面(UI)和服务器端逻辑(Server)。用户界面定义了应用的外观及交互元素,而服务器端逻辑则处理用户的输入并生成相应的输出。
加载展包和筛选数值型列
# 加载必要的R包
library(shiny) # 用于构建交互式Web应用
library(bslib) # 用于主题定制的包
library(dplyr) # 数据操作包
library(ggplot2) # 数据可视化包
library(ggExtra) # 用于在ggplot2图形中添加边际图的包
# 加载鸢尾花数据集
df <- iris
# 筛选出适合散点图的数值型列
df_num <- df |> select(where(is.numeric))
例如,如果鸢尾花数据集中包含列
Sepal.Length
、Sepal.Width
、Petal.Length
、Petal.Width
和Species
,其中前四列是数值型,那么df_num
将只包含前四列。
定义用户界面
在 Shiny 应用中,用户界面(UI)定义了应用的布局和用户交互组件。我们将使用 page_sidebar
函数来创建一个带有侧边栏的页面布局。
# 定义用户界面
ui <- page_sidebar(
sidebar = sidebar(
# 下拉菜单让用户选择X轴变量
varSelectInput("xvar", "X 变量", df_num, selected = "Sepal.Length"),
# 下拉菜单让用户选择Y轴变量
varSelectInput("yvar", "Y 变量", df_num, selected = "Sepal.Width"),
# 复选框组允许用户根据物种进行筛选
checkboxGroupInput(
"species", "按物种筛选",
choices = unique(df$Species),
selected = unique(df$Species)
),
hr(), # 添加水平分隔线
# 复选框允许用户选择是否按物种显示
checkboxInput("by_species", "显示物种", TRUE),
# 复选框允许用户选择是否显示边际图
checkboxInput("show_margins", "显示边际图", TRUE),
# 复选框允许用户选择是否添加平滑曲线
checkboxInput("smooth", "添加平滑曲线")
),
# 输出散点图
plotOutput("scatter")
)
varSelectInput
: 允许用户从鸢尾花数据集的数值变量中选择 X 轴和 Y 轴的变量。checkboxGroupInput
: 允许用户根据物种筛选数据。hr
: 插入一条水平分隔线,以分隔不同的输入控件。checkboxInput
: 复选框,用于控制是否显示物种、是否添加边际图,以及是否在散点图中添加平滑曲线。plotOutput
: 用于在页面上展示由ggplot2
生成的图形。
定义服务器端逻辑
定义服务器端逻辑指的是明确和编写在服务器端运行的一系列规则、流程和操作,以处理来自客户端(如网页浏览器或移动应用)的请求,并根据这些请求执行相应的任务。服务器端逻辑涵盖了广泛的功能,例如接收和解析客户端发送的数据,与数据库进行交互以读取或写入信息,执行复杂的计算和数据处理操作,根据特定条件做出决策,生成动态的内容并将其返回给客户端,以及处理用户认证、授权和安全性等方面的任务。
举个例子,当用户在购物网站上提交订单时,服务器端逻辑会验证订单信息的完整性和准确性,检查库存数量,计算总价,将订单数据保存到数据库中,并最终向用户返回确认消息。又比如,在社交媒体平台上,服务器端逻辑会决定哪些内容应该显示在用户的动态页面上,基于用户的关注列表、发布时间和内容相关性等因素进行筛选和排序。
# 定义服务器端逻辑
server <- function(input, output, session) {
# 根据用户选择的物种筛选数据
subsetted <- reactive({
req(input$species) # 确保选择了物种
df |> filter(Species %in% input$species) # 筛选数据
})
# 生成散点图
output$scatter <- renderPlot({
p <- ggplot(subsetted(), aes(!!input$xvar, !!input$yvar)) + list(
theme(legend.position = "bottom"), # 设置图例位置
if (input$by_species) aes(color = Species), # 如果选择按物种显示,按颜色区分物种
geom_point(), # 绘制散点
if (input$smooth) geom_smooth() # 如果选择平滑曲线,添加平滑线
)
# 如果选择显示边际图,添加边际图
if (input$show_margins) {
margin_type <- if (input$by_species) "density" else "histogram"
p <- ggExtra::ggMarginal(p, type = margin_type, margins = "both",
size = 8, groupColour = input$by_species, groupFill = input$by_species)
}
p # 返回生成的图形
}, res = 100) # 设置图形分辨率
}
subsetted
: 使用reactive
函数来创建一个反应式表达式,它根据用户选择的物种过滤数据集。req
函数确保在没有选择物种时应用不会出错。renderPlot
: 根据用户的输入动态生成图形。ggplot
函数用于创建基本的散点图,aes
函数定义了 X 轴和 Y 轴的变量。ggExtra::ggMarginal
: 如果用户选择了显示边际图,ggMarginal
函数会在散点图的边缘添加密度图或直方图。
3. 启动 Shiny 应用
shinyApp(ui, server)
这段代码将 UI 和服务器逻辑组合在一起,并启动 Shiny 应用。运行此应用后,用户可以选择不同的 X 轴和 Y 轴变量,筛选特定物种,并通过复选框控制是否显示物种、添加边际图或平滑曲线。
应用演示与扩展
在完成基础的 Shiny 应用之后,能够依据实际的需求来展开更进一步的拓展。比如说,您能够增添数据导入的功能,赋予用户上传自身数据集的权限,并对其展开可视化的分析;还能够丰富图表的类型,除了常见的散点图之外,添加诸如箱线图、柱状图等其他类型的图表;此外,借助 bslib 包,您能够为应用程序设定专属的自定义主题,从而使之与特定的品牌风格或者审美偏好相契合。
本文详细介绍了如何使用 Shiny 构建一个交互式的散点图应用,并提供了通过鸢尾花数据集进行数据可视化的示例。通过 Shiny 的强大功能,我们可以轻松地将静态的数据分析转变为动态、互动的 Web 应用,从而使数据分析过程更加直观和用户友好。所以,使用 Shiny,数据科学家和分析师不仅可以快速创建原型,还可以开发全功能的应用程序,供同事、客户或公众使用。这种能力使得 Shiny 成为 R 生态系统中不可或缺的一部分,为数据分析和可视化带来了全新的可能性。
.........
欢迎订阅我们专栏,深度系统地学习R语言。
为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 语言与数据科学的终极指南》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!
专栏《R 语言与数据科学的终极指南》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482