【全文3W字+】PyTest测试框架学习日记

发布于:2024-09-05 ⋅ 阅读:(76) ⋅ 点赞:(0)

我们先了解一下软件的测试,软件测试一般分为如下四个方面

  • 单元测试:称模块测试,针对软件设计中的最小单位——程序模块,进行正确性检查的测试工作
  • 集成测试:称组装测试,通常在单元测试的基础上,将所有程序模块进行有序的、递增测试,重点测试不同模块的接口部分
  • 系统测试:将整个软件系统看成一个整体进行测试,包括对功能、性能以及软件所运行的软硬件环境进行测试
  • 验收测试:指按照项目任务书或合同、供需双方约定的验收依据文档进行的对整个系统的测试与评审,决定是否接收或拒收系统 

pytest最初是作为一个单元测试框架而设计的,但它也提供了许多功能,使其能够进行更广泛的测试,包括集成测试,系统测试,他是一个非常成熟的全功能的python 测试框架。 它通过收集测试函数和模块,并提供丰富的断言库来简化测试的编写和运行,是一个非常成熟且功能强大的 Python 测试框架,具有以下几个特点:

  • 简单灵活:Pytest 容易上手,且具有灵活性。
  • 支持参数化:您可以轻松地为测试用例提供不同的参数。
  • 全功能:Pytest 不仅支持简单的单元测试,还可以处理复杂的功能测试。您甚至可以使用它来进行自动化测试,如 Selenium 或 Appium 测试,以及接口自动化测试(结合 Pytest 和 Requests 库)。
  • 丰富的插件生态:Pytest 有许多第三方插件,您还可以自定义扩展。一些常用的插件包括:
    • pytest-selenium:集成 Selenium。
    • pytest-html:生成HTML测试报告。
    • pytest-rerunfailures:在失败的情况下重复执行测试用例。
    • pytest-xdist:支持多 CPU 分发。
  • 与 Jenkins 集成良好
  • 支持 Allure 报告框架

本文将基于测试需求简单介绍pytest的用法。

Pytest安装

# 安装pytest:
pip install pytest
# 升级pytest
pip install -U pytest
# 查看pytest版本
pytest --version
# 查看已安装包列表
pip list
# 查看pytest帮助文档
pytest -h
# 安装第三方插件
pip install pytest-sugar
pip install pytest-rerunfailures
pip install pytest-xdist
pip install pytest-assume
pip install pytest-html

##linux终端会出现问题  pytest:找不到命令 

方法1:添加环境变量到 ~/.bashrc文件

pip show pytest      #查找位置命令1

find / -name pytest 2>/dev/null #查找可执行文件位置命令2

添加所得到路径到 ~/.bashrc 的 PATH 中 

#pytest
export PATH=/home/tom/.local/bin:$PATH    

#~/.bashrc 中添加上面两行!
source ~/.bashrc  

方法2:直接使用 Python 执行 pytest

另外一种可行的方法是直接通过 python 来运行 pytest,而不是依赖于命令行程序。例如:

python -m pytest --version

3c1021aea2b14de984ca03f86ed43326.png

2a153746dc224de5837f5ab2341ab81a.png

Pytest使用

命名规则

# 首先在使用pytest 时我们的模块名通常是以test开头或者test结尾,也可以修改配置文件,自定义命名规则
# test_*.py 或 *_test.py
test_demo1
demo2_test

# 模块中的类名要以Test 开始且不能有init 方法
class TestDemo1:
class TestLogin:

# 类中定义的测试方法名要以test_开头
test_demo1(self)
test_demo2(self)

# 测试用例
class test_one:
    def test_demo1(self):
        print("测试用例1")

    def test_demo2(self):
        print("测试用例2")

Pytest 参数

pytest支持很多参数,可以通过help命令查看

pytest -help

我们在这里列出来常用的几个:

-m: 用表达式指定多个标记名。 pytest 提供了一个装饰器 @pytest.mark.xxx,用于标记测试并分组(xxx是你定义的分组名),以便你快速选中并运行,各个分组直接用 and、or 来分割。

-v: 运行时输出更详细的用例执行信息 不使用-v参数,运行时不会显示运行的具体测试用例名称;使用-v参数,会在 console 里打印出具体哪条测试用例被运行。

-q: 类似 unittest 里的 verbosity,用来简化运行输出信息。 使用 -q 运行测试用例,仅仅显示很简单的运行信息, 例如:

.s..  [100%]
3 passed, 1 skipped in 9.60s

-k: 可以通过表达式运行指定的测试用例。 它是一种模糊匹配,用 and 或 or 区分各个关键字,匹配范围有文件名、类名、函数名。

-x: 出现一条测试用例失败就退出测试。 在调试时,这个功能非常有用。当出现测试失败时,停止运行后续的测试。

-s: 显示print内容 在运行测试脚本时,为了调试或打印一些内容,我们会在代码中加一些print内容,但是在运行pytest时,这些内容不会显示出来。如果带上-s,就可以显示了。

pytest test_se.py -s

Pytest 选择测试用例执行

在 Pytest 中,您可以按照测试文件夹、测试文件、测试类和测试方法的不同维度来选择执行测试用例。

  • 按照测试文件夹执行
# 执行所有当前文件夹及子文件夹下的所有测试用例
pytest .
# 执行跟当前文件夹同级的tests文件夹及子文件夹下的所有测试用例
pytest ../tests

# 按照测试文件执行
# 运行test_se.py下的所有的测试用例
pytest test_se.py

# 按照测试类执行,必须以如下格式:
pytest 文件名 .py:: 测试类,其中“::”是分隔符,用于分割测试module和测试类。
# 运行test_se.py文件下的,类名是TestSE下的所有测试用例
pytest test_se.py::TestSE

# 测试方法执行,必须以如下格式:
pytest 文件名 .py:: 测试类 :: 测试方法,其中 “::” 是分隔符,用于分割测试module、测试类,以及测试方法。
# 运行test_se.py文件下的,类名是TestSE下的,名字为test_get_new_message的测试用例 
pytest test_se.py::TestSE::test_get_new_message

# 以上选择测试用例的方法均是在**命令行**,如果您想直接在测试程序里执行可以直接在main函数中**调用pytest.main()**,其格式为:
pytest.main([模块.py::类::方法])

此外,Pytest 还支持控制测试用例执行的多种方式,例如过滤执行、多进程运行、重试运行等。

使用Pytest编写验证

  • 在测试过程中,我们使用之前验证过的加法器,进入Adder文件夹,在picker_out_adder目录下新建一个test_adder.py文件,内容如下:
# 导入测试模块和所需的库
from UT_Adder import *
import pytest
import ctypes
import random

# 使用 pytest fixture 来初始化和清理资源
@pytest.fixture
def adder():
    # 创建 DUTAdder 实例,加载动态链接库
    dut = DUTAdder()
    # 执行一次时钟步进,准备 DUT
    dut.Step(1)
    # yield 语句之后的代码会在测试结束后执行,用于清理资源
    yield dut
    # 清理DUT资源,并生成测试覆盖率报告和波形
    dut.Finish()

class TestFullAdder:
    # 将 full_adder 定义为静态方法,因为它不依赖于类实例
    @staticmethod
    def full_adder(a, b, cin):
        cin = cin & 0b1
        Sum = ctypes.c_uint64(a).value
        Sum += ctypes.c_uint64(b).value + cin
        Cout = (Sum >> 64) & 0b1
        Sum &= 0xffffffffffffffff
        return Sum, Cout

    # 使用 pytest.mark.usefixtures 装饰器指定使用的 fixture
    @pytest.mark.usefixtures("adder")
    # 定义测试方法,adder 参数由 pytest 通过 fixture 注入
    def test_adder(self, adder):
        # 进行多次随机测试
        for _ in range(114514):
            # 随机生成 64 位的 a 和 b,以及 1 位的进位 cin
            a = random.getrandbits(64)
            b = random.getrandbits(64)
            cin = random.getrandbits(1)
            # 设置 DUT 的输入
            adder.a.value = a
            adder.b.value = b
            adder.cin.value = cin
            # 执行一次时钟步进
            adder.Step(1)
            # 使用静态方法计算预期结果
            sum, cout = self.full_adder(a, b, cin)
            # 断言 DUT 的输出与预期结果相同
            assert sum == adder.sum.value
            assert cout == adder.cout.value

if __name__ == "__main__":
    pytest.main(['-v', 'test_adder.py::TestFullAdder'])
  • 运行测试之后输出如下:
collected 1 item

 test_adder.py ✓                                                 100% ██████████

Results (4.33s):

测试成功表明,在经过114514次循环之后,我们的设备暂时没有发现bug。然而,使用多次循环的随机数生成测试用例会消耗大量资源,并且这些随机生成的测试用例可能无法有效覆盖所有边界条件。在下一部分,我们将介绍一种更有效的测试用例生成方法。

Pytest 使用手册 — learning-pytest 1.0 文档icon-default.png?t=N7T8https://learning-pytest.readthedocs.io/zh/latest/

第一个测试函数

Pytest 使用 Python 的 assert 进行条件判断,最简单的测试函数如:

# test1.py

def test_passing():
    assert (1, 2, 3) == (1, 2, 3)

运行测试函数

使用命令 pytest 运行测试函数:

$ pytest tests/test1.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test1.py .                                                         [100%]

========================== 1 passed in 0.09 seconds ===========================

b628661fdfd34ab994fa5619e7ec7e14.png

pytest 使用 . 标识测试成功(PASSED)。    

可以使用 -v 选项,显示测试的详细信息。

使用 pytest -h 查看 pytest 的所有选项。

============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0 -- c:\anaconda3\python.exe
cachedir: .pytest_cache
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests/test1.py::test_passing PASSED                                      [100%]

========================== 1 passed in 0.03 seconds ===========================

测试失败

下面是一个失败的测试函数:

# test2.py

def test_failing():
    assert (1, 2, 3) == (3, 2, 1)

运行结果为:

$ pytest tests/test2.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test2.py F                                                         [100%]

================================== FAILURES ===================================
________________________________ test_failing _________________________________

    def test_failing():
>       assert (1, 2, 3) == (3, 2, 1)
E       assert (1, 2, 3) == (3, 2, 1)
E         At index 0 diff: 1 != 3
E         Use -v to get the full diff

tests\test2.py:2: AssertionError
========================== 1 failed in 0.19 seconds ===========================

pytest 使用 F 标识测试失败(FAILED)。

pytest 对失败的测试给出了非常人性化的提示。

断言

在 pytest 中,assert 是编写测试的最基础工具。如:

assert a == b

assert a <= b

具体的 assert 语法参考 The assert statement 。

捕获异常

在测试过程中,经常需要测试是否如期抛出预期的异常,以确定异常处理模块生效。在 pytest 中使用 pytest.raises() 进行异常捕获:

# test_raises.py

def test_raises():
    with pytest.raises(TypeError) as e:
        connect('localhost', '6379')
    exec_msg = e.value.args[0]
    assert exec_msg == 'port type must be int'

运行结果如下:

$ pytest test_raises.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test-function\test_raise.py .                                      [100%]

========================== 1 passed in 0.07 seconds ===========================

标记函数

Pytest 查找测试策略

默认情况下,pytest 会递归查找当前目录下所有以 test 开始或结尾的 Python 脚本,并执行文件内的所有以 test 开始或结束的函数和方法。

对于下面脚本:

# test_no_mark.py

def test_func1():
    assert 1 == 1

def test_func2():
    assert 1 != 1

直接执行测试脚本会同时执行所有测试函数:

$ pytest tests/test-function/test_no_mark.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests\test-function\test_no_mark.py .F                                   [100%]

================================== FAILURES ===================================
_________________________________ test_func2 __________________________________

    def test_func2():
>       assert 1 != 1
E       assert 1 != 1

tests\test-function\test_no_mark.py:6: AssertionError
===================== 1 failed, 1 passed in 0.07 seconds ======================

标记测试函数

由于某种原因(如 test_func2 的功能尚未开发完成),我们只想执行指定的测试函数。在 pytest 中有几种方式可以解决:

第一种,显式指定函数名,通过 :: 标记。

$ pytest tests/test-function/test_no_mark.py::test_func1
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test-function\test_no_mark.py .                                    [100%]

========================== 1 passed in 0.02 seconds ===========================

第二种,使用模糊匹配,使用 -k 选项标识。

$ pytest -k func1 tests/test-function/test_no_mark.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items / 1 deselected

tests\test-function\test_no_mark.py .                                    [100%]

=================== 1 passed, 1 deselected in 0.03 seconds ====================

import pytest    #源代码需要添加这行

e32811ee3872408facb25267348704e7.png

注解

以上两种方法,第一种一次只能指定一个测试函数,当要进行批量测试时无能为力;第二种方法可以批量操作,但需要所有测试的函数名包含相同的模式,也不方便。

第三种,使用 pytest.mark 在函数上进行标记。

带标记的测试函数如:

# test_with_mark.py

@pytest.mark.finished
def test_func1():
    assert 1 == 1

@pytest.mark.unfinished
def test_func2():
    assert 1 != 1

测试时使用 -m 选择标记的测试函数:

$ pytest -m finished tests/test-function/test_with_mark.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items / 1 deselected

tests\test-function\test_with_mark.py .                                  [100%]

=================== 1 passed, 1 deselected in 0.10 seconds ====================

使用 mark,我们可以给每个函数打上不同的标记,测试时指定就可以允许所有被标记的函数。

注解

一个函数可以打多个标记;多个函数也可以打相同的标记。

运行测试时使用 -m 选项可以加上逻辑,如:

$ pytest -m "finished and commit"

$ pytest -m "finished and not merged"

跳过测试

上一节提到 pytest 使用标记过滤测试函数,所以对于那些尚未开发完成的测试,最好的处理方式就是略过而不执行测试。

按正向的思路,我们只要通过标记指定要测试的就可以解决这个问题;但有时候的处境是我们能进行反向的操作才是最好的解决途径,即通过标记指定要跳过的测试。

Pytest 使用特定的标记 pytest.mark.skip 完美的解决了这个问题。

# test_skip.py

@pytest.mark.skip(reason='out-of-date api')
def test_connect():
    pass

执行结果可以看到该测试已被忽略:

$ pytest tests/test-function/test_skip.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test-function\test_skip.py s                                       [100%]

========================== 1 skipped in 0.13 seconds ==========================

pytest 使用 s 表示测试被跳过(SKIPPED)。

Pytest 还支持使用 pytest.mark.skipif 为测试函数指定被忽略的条件。

@pytest.mark.skipif(conn.__version__ < '0.2.0',
                    reason='not supported until v0.2.0')
def test_api():
    pass

1. 创建测试文件

将上述代码保存到一个 Python 测试文件中,比如 test_conditional_skip.py,确保您有一个名为 conn 的模块,或者您可以创建一个简单的 conn.py 文件来模拟版本属性:

# conn.py 示例  

__version__ = '0.1.0'  # 您可以修改这个版本号来测试不同情况

2. 创建一个测试文件

在同一目录下创建 test_conditional_skip.py 文件并写入您的代码:

import pytest  
import conn  

@pytest.mark.skipif(conn.__version__ < '0.2.0', reason='not supported until v0.2.0')  
def test_api():  
    pass

3. 运行测试

打开终端,导航到包含您的测试文件和 conn.py 的目录,然后运行:

pytest test_conditional_skip.py

4. 查看测试结果

根据 conn.__version__ 的值,您会看到不同的输出:

  • 如果 conn.__version__ 的值是 '0.1.0',您应该会看到类似以下内容的输出,其中表明测试被跳过:

    ============================= test session starts =============================  
    ...  
    collected 1 item  
    
    test_conditional_skip.py skipped: not supported until v0.2.0
  • 如果您将 conn.__version__ 修改为 '0.2.0' 或更高版本,然后再次运行测试,您会看到您的测试被运行:

    ...  
    collected 1 item  
    
    test_conditional_skip.py .  # 点表示测试通过

预见的错误

如果我们事先知道测试函数会执行失败,但又不想直接跳过,而是希望显示的提示。

Pytest 使用 pytest.mark.xfail 实现预见错误功能:

# test_xfail.py

@pytest.mark.xfail(gen.__version__ < '0.2.0',
                   reason='not supported until v0.2.0')
def test_api():
    id_1 = gen.unique_id()
    id_2 = gen.unique_id()
    assert id_1 != id_2

执行结果:

$ pytest tests/test-function/test_xfail.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\test-function\test_xfail.py x                                      [100%]

========================== 1 xfailed in 0.12 seconds ==========================

pytest 使用 x 表示预见的失败(XFAIL)。

如果预见的是失败,但实际运行测试却成功通过,pytest 使用 X 进行标记(XPASS)。

参数化

当对一个测试函数进行测试时,通常会给函数传递多组参数。比如测试账号登陆,我们需要模拟各种千奇百怪的账号密码。

当然,我们可以把这些参数写在测试函数内部进行遍历。不过虽然参数众多,但仍然是一个测试,当某组参数导致断言失败,测试也就终止了。

通过异常捕获,我们可以保证程所有参数完整执行,但要分析测试结果就需要做不少额外的工作。

在 pytest 中,我们有更好的解决方法,就是参数化测试,即每组参数都独立执行一次测试。使用的工具就是 pytest.mark.parametrize(argnames, argvalues)

这里是一个密码长度的测试函数,其中参数名为 passwd,其可选列表包含三个值:

# test_parametrize.py

@pytest.mark.parametrize('passwd',
                      ['123456',
                       'abcdefdfs',
                       'as52345fasdf4'])
def test_passwd_length(passwd):
    assert len(passwd) >= 8

运行可知执行了三次测试:

$ pytest tests/test-function/test_parametrize.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 3 items

tests\test-function\test_parametrize.py F..                              [100%]

================================== FAILURES ===================================

再看一个多参数的例子,用于校验用户密码:

# test_parametrize.py

@pytest.mark.parametrize('user, passwd',
                         [('jack', 'abcdefgh'),
                          ('tom', 'a123456a')])
def test_passwd_md5(user, passwd):
    db = {
        'jack': 'e8dc4081b13434b45189a720b77b6818',
        'tom': '1702a132e769a623c1adb78353fc9503'
    }

    import hashlib

    assert hashlib.md5(passwd.encode()).hexdigest() == db[user]

使用 -v 执行测试

$ pytest -v tests/test-function/test_parametrize.py::test_passwd_md5
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0 -- c:\anaconda3\python.exe
cachedir: .pytest_cache
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests/test-function/test_parametrize.py::test_passwd_md5[jack-abcdefgh] PASSED [ 50%]
tests/test-function/test_parametrize.py::test_passwd_md5[tom-a123456a] PASSED [100%]

========================== 2 passed in 0.04 seconds ===========================

错误信息 `ERROR: found no collectors for /home/tom/pytest/test_parametrize.py::test_passwd_md5` 表示 `pytest` 找不到要运行的测试用例。这通常发生在以下几种情况下:

### 1. **函数名称不符合 pytest 的约定**

`pytest` 识别测试函数的标准是以 `test_` 开头。确保您的测试函数 `test_passwd_md5` 确实以 `test_` 开头。如果函数名称拼写错误或没有遵循这一约定,pytest 就不会将其视为有效的测试用例。

例如,确保您有如下定义:

```python
def test_passwd_md5():
    # 测试逻辑
    assert True  # 替换为您的实际测试断言
```

### 2. **文件或目录名称的约定**

确保测试文件名以 `test_` 开头或以 `_test.py` 结尾,例如,您应该有一个文件名为 `test_parametrize.py` 或 `parametrize_test.py`。 

### 3. **文件内容包含有效的测试**

请确保 `test_parametrize.py` 文件实际上包含可识别的测试函数。有时候,文件就是存在,但没有定义有效的测试函数。

### 4. **使用 `pytest` 的收集机制**

如果您在运行 `pytest` 时仅指定文件名称,它会查找所有以 `test_` 开头的函数。确认文件内的测试函数能够被正常识别并符合所有命名规范。

### 5. **检查 pytest 的输出**

运行以下命令来诊断可收集的测试项:

```bash
pytest --collect-only
```

这将列出 `pytest` 检测到的所有测试用例,如果您的测试函数未被列出,说明这些函数未被正确识别。

### 6. **确保 pytest 安装无误**

有时候,环境或安装问题也会导致这种情况。您可以尝试重新安装 `pytest`:

```bash
pip uninstall pytest
pip install pytest
```

### 7. **验证代码是否有语法错误或导入问题**

如果有语法错误或者导入问题,可能导致 `pytest` 无法收集测试项。确保代码中没有错误。可以在 Python 解释器中单独运行文件确认从头到尾没有问题:

```bash
python test_parametrize.py
```

### 总结

检查测试函数是否命名正确、文件名格式是否合法,以及文件内部是否定义了有效的测试函数。如果上述方法都不能解决问题,请检查输出的内容,提供更多细节,这样可以帮助进一步诊断问题。

///********************上面的没用!!1***********

# test_parametrize.py
import pytest  
import hashlib  

@pytest.mark.parametrize('user, passwd',  
                         [('jack', 'abcdefgh'),  
                          ('tom', 'a123456a')])  
def test_passwd_md5(user, passwd):  
    db = {  
        'jack': 'e8dc4081b13434b45189a720b77b6818',  
        'tom': '1702a132e769a623c1adb78353fc9503'  
    }  

    assert hashlib.md5(passwd.encode()).hexdigest() == db[user]

1282bb659cde44b69d83f0d3e8366608.png

如果觉得每组测试的默认参数显示不清晰,我们可以使用 pytest.param 的 id 参数进行自定义。

# test_parametrize.py

@pytest.mark.parametrize('user, passwd',
                         [pytest.param('jack', 'abcdefgh', id='User<Jack>'),
                          pytest.param('tom', 'a123456a', id='User<Tom>')])
def test_passwd_md5_id(user, passwd):
    db = {
        'jack': 'e8dc4081b13434b45189a720b77b6818',
        'tom': '1702a132e769a623c1adb78353fc9503'
    }

    import hashlib

    assert hashlib.md5(passwd.encode()).hexdigest() == db[user]

现在的执行结果为:

$ pytest -v tests/test-function/test_parametrize.py::test_passwd_md5_id
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0 -- c:\anaconda3\python.exe
cachedir: .pytest_cache
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests/test-function/test_parametrize.py::test_passwd_md5_id[User<Jack>] PASSED [ 50%]
tests/test-function/test_parametrize.py::test_passwd_md5_id[User<Tom>] PASSED [100%]

========================== 2 passed in 0.07 seconds ===========================

abfda2c1e2a14e5f8a4694b2016c13fd.png

什么是固件

固件(Fixture)是一些函数,pytest 会在执行测试函数之前(或之后)加载运行它们。

我们可以利用固件做任何事情,其中最常见的可能就是数据库的初始连接和最后关闭操作。

Pytest 使用 pytest.fixture() 定义固件,下面是最简单的固件,只返回北京邮编:

# test_postcode.py

@pytest.fixture()
def postcode():
    return '010'


def test_postcode(postcode):
    assert postcode == '010'

固件可以直接定义在各测试脚本中,就像上面的例子。更多时候,我们希望一个固件可以在更大程度上复用,这就需要对固件进行集中管理。Pytest 使用文件 conftest.py 集中管理固件。

在复杂的项目中,可以在不同的目录层级定义 conftest.py,其作用域为其所在的目录和子目录。

不要自己显式调用 conftest.py,pytest 会自动调用,可以把 conftest 当做插件来理解。

预处理和后处理

很多时候需要在测试前进行预处理(如新建数据库连接),并在测试完成进行清理(关闭数据库连接)。

当有大量重复的这类操作,最佳实践是使用固件来自动化所有预处理和后处理。

Pytest 使用 yield 关键词将固件分为两部分,yield 之前的代码属于预处理,会在测试前执行;yield 之后的代码属于后处理,将在测试完成后执行。

以下测试模拟数据库查询,使用固件来模拟数据库的连接关闭:

# test_db.py

@pytest.fixture()
def db():
    print('Connection successful')

    yield

    print('Connection closed')


def search_user(user_id):
    d = {
        '001': 'xiaoming'
    }
    return d[user_id]


def test_search(db):
    assert search_user('001') == 'xiaoming'

执行时使用 -s 阻止消息被吞:

$ pytest -s tests/fixture/test_db.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\fixture\test_db.py Connection successful
.Connection closed


========================== 1 passed in 0.02 seconds ===========================

可以看到在测试成功的 . 标识前后有数据库的连接和关闭操作。

如果想更细的跟踪固件执行,可以使用 --setup-show 选项:

$ pytest --setup-show tests/fixture/test_db.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\fixture\test_db.py
      SETUP    F db
        tests/fixture/test_db.py::test_search (fixtures used: db).
      TEARDOWN F db

========================== 1 passed in 0.03 seconds ===========================

8c8e3c0819b44ec9a6d25357a4f64f9c.png

作用域

固件的作用是为了抽离出重复的工作和方便复用,为了更精细化控制固件(比如只想对数据库访问测试脚本使用自动连接关闭的固件),pytest 使用作用域来进行指定固件的使用范围。

在定义固件时,通过 scope 参数声明作用域,可选项有:

  • function: 函数级,每个测试函数都会执行一次固件;
  • class: 类级别,每个测试类执行一次,所有方法都可以使用;
  • module: 模块级,每个模块执行一次,模块内函数和方法都可使用;
  • session: 会话级,一次测试只执行一次,所有被找到的函数和方法都可用。

默认的作用域为 function

@pytest.fixture(scope='function')
def func_scope():
    pass


@pytest.fixture(scope='module')
def mod_scope():
    pass


@pytest.fixture(scope='session')
def sess_scope():
    pass


@pytest.fixture(scope='class')
def class_scope():
    pass

最简单使用固件方式是作为测试函数参数:

# test_scope.py

def test_multi_scope(sess_scope, mod_scope, func_scope):
    pass

执行结果如下,可以清楚看到各固件的作用域和执行顺序:

$ pytest --setup-show tests/fixture/test_scope.py::test_multi_scope
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\fixture\test_scope.py
SETUP    S sess_scope
  SETUP    M mod_scope
      SETUP    F func_scope
        tests/fixture/test_scope.py::test_multi_scope (fixtures used: func_scope, mod_scope, sess_scope).
      TEARDOWN F func_scope
  TEARDOWN M mod_scope
TEARDOWN S sess_scope

========================== 1 passed in 0.10 seconds ===========================
# test_scope.py
import pytest

@pytest.fixture(scope='function')
def func_scope():
    pass


@pytest.fixture(scope='module')
def mod_scope():
    pass


@pytest.fixture(scope='session')
def sess_scope():
    pass


@pytest.fixture(scope='class')
def class_scope():
    pass

def test_multi_scope(sess_scope, mod_scope, func_scope):
    pass

df990dfcb9004f74b1d89398c8b9c1e9.png

对于类使用作用域,需要使用 pytest.mark.usefixtures (对函数和方法也适用):

# test_scope.py

@pytest.mark.usefixtures('class_scope')
class TestClassScope:
    def test_1(self):
        pass

    def test_2(self):
        pass

执行结果如下,可见所有测试函数都在固件作用范围内:

$ pytest --setup-show tests/fixture/test_scope.py::TestClassScope
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests\fixture\test_scope.py
    SETUP    C class_scope
        tests/fixture/test_scope.py::TestClassScope::()::test_1 (fixtures used: class_scope).
        tests/fixture/test_scope.py::TestClassScope::()::test_2 (fixtures used: class_scope).
    TEARDOWN C class_scope

========================== 2 passed in 0.03 seconds ===========================
# test_scope1.py
import pytest

@pytest.fixture(scope='class')
def class_scope():
    pass
    
@pytest.mark.usefixtures('class_scope')
class TestClassScope:
    def test_1(self):
        pass

    def test_2(self):
        pass

194148d1e874490d8d31284c3b52e052.png

自动执行

目前为止,所有固件的使用都是手动指定,或者作为参数,或者使用 usefixtures

如果我们想让固件自动执行,可以在定义时指定 autouse 参数。

下面是两个自动计时固件,一个用于统计每个函数运行时间(function 作用域),一个用于计算测试总耗时(session 作用域):

# test_autouse.py

DATE_FORMAT = '%Y-%m-%d %H:%M:%S'


@pytest.fixture(scope='session', autouse=True)
def timer_session_scope():
    start = time.time()
    print('\nstart: {}'.format(time.strftime(DATE_FORMAT, time.localtime(start))))

    yield

    finished = time.time()
    print('finished: {}'.format(time.strftime(DATE_FORMAT, time.localtime(finished))))
    print('Total time cost: {:.3f}s'.format(finished - start))


@pytest.fixture(autouse=True)
def timer_function_scope():
    start = time.time()
    yield
    print(' Time cost: {:.3f}s'.format(time.time() - start))

注意下面的两个测试函数并都没有显式使用固件:

def test_1():
    time.sleep(1)


def test_2():
    time.sleep(2)

执行测试可看到,固件自动执行并完成计时任务:

$ pytest -s tests/fixture/test_autouse.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests\fixture\test_autouse.py
start: 2018-06-12 10:16:27
. Time cost: 1.003s.
. Time cost: 2.003s.
finished: 2018-06-12 10:16:30
Total time cost: 3.016s.


========================== 2 passed in 3.11 seconds ===========================

错误信息 `NameError: name 'time' is not defined` 表示在您的测试代码中使用了 `time` 模块,但未导入该模块。Python 在执行时找不到 `time` 这个名称,因此抛出了 `NameError`。

### 解决方案

要解决这个问题,您需要在 `test_autouse.py` 文件的开头添加对 `time` 模块的导入。请确保您的代码类似于以下示例:

```python
import time
import pytest

def test_1():
    start_time = time.time()
    # 在这里执行一些操作
    duration = time.time() - start_time
    assert duration < 1  # 示例断言

def test_2():
    start_time = time.time()
    # 在这里执行一些操作
    duration = time.time() - start_time
    assert duration < 1  # 示例断言
```

### 检查步骤

1. **导入时间模块**:确保在文件顶部有 `import time`。
2. **检查其他模块**:如果使用其他模块(如 `pytest`),也要确保它们已被导入。
3. **运行测试**:保存更改后,重新运行测试以确认问题是否已解决。

### 总结

只需在文件的开头添加 `import time`,就可以解决此问题。

# test_autouse.py
import pytest
import time

DATE_FORMAT = '%Y-%m-%d %H:%M:%S'


@pytest.fixture(scope='session', autouse=True)
def timer_session_scope():
    start = time.time()
    print('\nstart: {}'.format(time.strftime(DATE_FORMAT, time.localtime(start))))

    yield

    finished = time.time()
    print('finished: {}'.format(time.strftime(DATE_FORMAT, time.localtime(finished))))
    print('Total time cost: {:.3f}s'.format(finished - start))


@pytest.fixture(autouse=True)
def timer_function_scope():
    start = time.time()
    yield
    print(' Time cost: {:.3f}s'.format(time.time() - start))
    
def test_1():
    time.sleep(1)


def test_2():
    time.sleep(2)

45fed4feb853430eb72841c707e3c045.png

重命名

固件的名称默认为定义时的函数名,如果不想使用默认,可以通过 name 选项指定名称:

# test_rename.py

@pytest.fixture(name='age')
def calculate_average_age():
    return 28


def test_age(age):
    assert age == 28

参数化

在“第二部分 测试函数”中,介绍了函数的参数化测试:

# test-function/test_parametrize.py

@pytest.mark.parametrize('passwd',
                      ['123456',
                       'abcdefdfs',
                       'as52345fasdf4'])
def test_passwd_length(passwd):
    assert len(passwd) >= 8

因为固件也是函数,我们同样可以对固件进行参数化。在什么情况下需要对固件参数化?

假设现在有一批 API 需要测试对不同数据库的支持情况(对所有数据库进行相同操作),最简单的方法就是针对每个数据库编写一个测试用例,但这包含大量重复代码,如数据库的连接、关闭,查询等。

进一步,可以使用固件抽离出数据库的通用操作,每个 API 都能复用这些数据库固件,同时可维护性也得到提升。

更进一步,可以继续将这些固件合并为一个,而通过参数控制连接到不同的数据库。这就需要使用固件参数化来实现。固件参数化需要使用 pytest 内置的固件 request,并通过 request.param 获取参数。

@pytest.fixture(params=[
    ('redis', '6379'),
    ('elasticsearch', '9200')
])
def param(request):
    return request.param


@pytest.fixture(autouse=True)
def db(param):
    print('\nSucceed to connect %s:%s' % param)

    yield

    print('\nSucceed to close %s:%s' % param)


def test_api():
    assert 1 == 1

执行结果:

$ pytest -s tests/fixture/test_parametrize.py
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 2 items

tests\fixture\test_parametrize.py
Succeed to connect redis:6379
.
Succeed to close redis:6379

Succeed to connect elasticsearch:9200
.
Succeed to close elasticsearch:9200

========================== 2 passed in 0.10 seconds ===========================
# test_parametrize2.py
import pytest
    
@pytest.fixture(params=[
    ('redis', '6379'),
    ('elasticsearch', '9200')
])
def param(request):
    return request.param


@pytest.fixture(autouse=True)
def db(param):
    print('\nSucceed to connect %s:%s' % param)

    yield

    print('\nSucceed to close %s:%s' % param)


def test_api():
    assert 1 == 1

2d5f6f52e373436b90b36fd2d2133b3f.png

与函数参数化使用 @pytest.mark.parametrize 不同,固件在定义时使用 params 参数进行参数化。

固件参数化依赖于内置固件 request 及其属性 param

内置固件

tmpdir & tmpdir_factory

用于临时文件和目录管理,默认会在测试结束时删除。

tmpdir 只有 function 作用域,只能在函数内使用。

使用 tmpdir.mkdir() 创建临时目录,tmpdir.join() 创建临时文件(或者使用创建的目录)。

def test_tmpdir(tmpdir):
    a_dir = tmpdir.mkdir('mytmpdir')
    a_file = a_dir.join('tmpfile.txt')

    a_file.write('hello, pytest!')

    assert a_file.read() == 'hello, pytest!'

tmpdir_factory 可以在所有作用域使用,包括 function, class, module, session

@pytest.fixture(scope='module')
def my_tmpdir_factory(tmpdir_factory):
    a_dir = tmpdir_factory.mktemp('mytmpdir')
    a_file = a_dir.join('tmpfile.txt')

    a_file.write('hello, pytest!')

    return a_file

pytestconfig

使用 pytestconfig,可以很方便的读取命令行参数和配置文件。

下面示例演示命令行参数解析:首先在 conftest.py 中使用函数 pytest_addoption (特定的 hook function ):

# conftest.py

def pytest_addoption(parser):
    parser.addoption('--host', action='store',
                     help='host of db')
    parser.addoption('--port', action='store', default='8888',
                     help='port of db')

然后就可以在测试函数中通过 pytestconfig 获取命令行参数:

# test_config.py

def test_option1(pytestconfig):
    print('host: %s' % pytestconfig.getoption('host'))
    print('port: %s' % pytestconfig.getoption('port'))

pytestconfig 其实是 request.config 的快捷方式,所以也可以自定义固件实现命令行参数读取。

# conftest.py

def pytest_addoption(parser):
    parser.addoption('--host', action='store',
                     help='host of db')
    parser.addoption('--port', action='store', default='8888',
                     help='port of db')


@pytest.fixture
def config(request):
    return request.config


# test_config.py

def test_option2(config):
    print('host: %s' % config.getoption('host'))
    print('port: %s' % config.getoption('port'))

执行结果:

$ pytest -s --host=localhost tests/fixture/test_config.py::test_option2
============================= test session starts =============================
platform win32 -- Python 3.6.4, pytest-3.6.1, py-1.5.2, pluggy-0.6.0
rootdir: F:\self-repo\learning-pytest, inifile:
collected 1 item

tests\fixture\test_config.py host: localhost
port: 8888
.

========================== 1 passed in 0.06 seconds ===========================

错误信息 `NameError: name 'pytest' is not defined` 表示在您的 `conftest.py` 文件中使用了 `pytest` 模块,但未导入该模块。这通常发生在您尝试使用 `pytest` 的功能(如装置、标记等)时,但忘记在文件顶部添加相应的导入语句。

### 解决方案

要解决这个问题,您需要在 `conftest.py` 文件的开头添加对 `pytest` 模块的导入。确保您的代码类似于以下示例:

```python
import pytest

@pytest.fixture
def sample_fixture():
    # 设置代码
    yield
    # 清理代码
```

### 检查步骤

1. **导入 pytest**:确保在 `conftest.py` 文件的顶部有 `import pytest`。
2. **检查其他模块**:如果您在 `conftest.py` 中使用了其他模块,也要确保它们已被导入。
3. **运行测试**:保存更改后,重新运行测试以确认问题是否已解决。

### 总结

只需在 `conftest.py` 文件的开头添加 `import pytest`,就可以解决此问题。

capsys

capsys 用于捕获 stdout 和 stderr 的内容,并临时关闭系统输出。

# test_capsys.py    教程的

def ping(output):
    print('Pong...', file=output)


def test_stdout(capsys):
    ping(sys.stdout)
    out, err = capsys.readouterr()
    assert out == 'Pong...\n'
    assert err == ''


def test_stderr(capsys):
    ping(sys.stderr)
    out, err = capsys.readouterr()
    assert out == ''
    assert err == 'Pong...\n'
# test_capsys.py      
import pytest
import sys

def ping(output):
    print('Pong...', file=output)


def test_stdout(capsys):
    ping(sys.stdout)
    out, err = capsys.readouterr()
    assert out == 'Pong...\n'
    assert err == ''


def test_stderr(capsys):
    ping(sys.stderr)
    out, err = capsys.readouterr()
    assert out == ''
    assert err == 'Pong...\n'

monkeypatch

monkeypath 用于运行时动态修改类或模块。

In Python, the term monkey patch only refers to dynamic modifications of a class or module at runtime, motivated by the intent to patch existing third-party code as a workaround to a bug or feature which does not act as you desire.

在Python中,monkey patch一词仅指在运行时对类或模块进行动态修改,其动机是为了修补现有的第三方代码,作为对不符合您期望的错误或功能的解决方案。

一个简单的 monkeypatch 如:

from SomeOtherProduct.SomeModule import SomeClass

def speak(self):
    return "ook ook eee eee eee!"

SomeClass.speak = speak

Pytest 内置 monkeypatch 提供的函数有:

  • setattr(target, name, value, raising=True),设置属性;
  • delattr(target, name, raising=True),删除属性;
  • setitem(dic, name, value),字典添加元素;
  • delitem(dic, name, raising=True),字典删除元素;
  • setenv(name, value, prepend=None),设置环境变量;
  • delenv(name, raising=True),删除环境变量;
  • syspath_prepend(path),添加系统路径;
  • chdir(path),切换目录。

其中 raising 用于通知 pytest 在元素不存在时是否抛出异常;prepend 如果设置,环境变量将变为 value+prepend+<old value> 。

下面使用保存配置文件示例说明 monkeypatch 的作用和使用。

假设我们需要切换某个服务到国内科大源以加速,有以下脚本用于修改配置文件 .conf.json

# test_monkeypatch.py

def dump_config(config):
    path = os.path.expanduser('~/.conf.json')
    with open(path, 'w', encoding='utf-8') as wr:
        json.dump(config, wr, indent=4)


def test_config():
    dump_config(config)
    path = os.path.expanduser('~/.conf.json')
    expected = json.load(open(path, 'r', encoding='utf-8'))
    assert expected == config

似乎测试正常执行完全没有问题,但如果我们的家目录下恰好有这个配置文件并且维护了许多配置,运行测试将会覆盖原有配置,这太可怕了!

所以我们需要修改测试,最好能在临时目录里完成。但程序已经写死了文件路径,怎么办?

这种在运行时控制程序的功能就需要 monkeypatch 来实现,下面在测试过程中修改了环境变量:

# test_monkeypatch.py

def test_config_monkeypatch(tmpdir, monkeypatch):
    monkeypatch.setenv('HOME', tmpdir.mkdir('home'))

    dump_config(config)
    path = os.path.expanduser('~/.conf.json')
    expected = json.load(open(path, 'r', encoding='utf-8'))
    assert expected == config

现在测试会来临时目录中执行,但环境变量可能对系统有依赖,所以更好的解决方法能自己控制路径中 ~ 的替换,这次通过改变 os.path.expanduser 的行为来实现:

# test_monkeypatch.py

def test_config_monkeypatch2(tmpdir, monkeypatch):
    fake_home = tmpdir.mkdir('home')
    monkeypatch.setattr(os.path, 'expanduser',
                        lambda x: x.replace('~', str(fake_home)))
    dump_config(config)
    path = os.path.expanduser('~/.conf.json')
    expected = json.load(open(path, 'r', encoding='utf-8'))
    assert expected == config

recwarn

recwarn 用于捕获程序中 warnings 产生的警告。

# test_recwarn.py

def warn():
    warnings.warn('Deprecated function', DeprecationWarning)


def test_warn(recwarn):
    warn()
    assert len(recwarn) == 1
    w = recwarn.pop()
    assert w.category == DeprecationWarning

此外,pytest 可以使用 pytest.warns() 捕获警告:

def test_warn2():
    with pytest.warns(None) as warnings:
        warn()

    assert len(warnings) == 1
    w = warnings.pop()
    assert w.category == DeprecationWarning