【算法篇】数组类(笔记)

发布于:2024-09-17 ⋅ 阅读:(126) ⋅ 点赞:(0)

目录

一、二分查找

 1. 方法一

2. 方法二

二、移除元素

1. 暴力破解

2. 双指针法

三、有序数组的平方

双指针法    

四、长度最小的子数组

 1. 暴力破解

2. 滑动窗口

五、螺旋矩阵 II


一、二分查找

704. 二分查找 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/binary-search/description/

        给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1 

示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000]之间。
  • nums 的每个元素都将在 [-9999, 9999]之间。

 1. 方法一

        定义 target 在一个在左闭右闭的区间里,也就是 [left, right]

class Solution {
public:
    int search(vector<int>& nums, int target) {
        // 二分查找
        // 方法1 [left, right]
        int left = 0, right = nums.size() - 1;
        
        int middle = left + ((right - left) / 2);  // 防止 left + right 溢出

        while(left <= right)
        {
            middle = left + ((right - left) / 2);
            if(nums[middle] > target)
            {
                right = middle - 1;
            }
            else if(nums[middle] < target)
            {
                left = middle + 1; 
            }
            else if(nums[middle] == target)
            {
                return middle;
            }
        }
        return -1;
    }
};
  •  因为 left == right 是有意义的,所以 while (left <= right) 要使用 <= 。
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个 nums[middle] 一定不是 target,那么 接下来 要查找的左区间 结束 下标位置就是 middle - 1。

2. 方法二

        定义 target 是在一个在左闭右开的区间里,也就是 [left, right)

class Solution {
public:
    int search(vector<int>& nums, int target) {
        // 二分查找
        // 方法2 [left, right)
        int left = 0, right = nums.size();
        
        int middle = left + ((right - left) / 2);  // 防止 left + right 导致溢出
        
        while(left < right)
        {
            middle = left + ((right - left) / 2);
            if(nums[middle] > target)
            {
                right = middle;
            }
            else if(nums[middle] < target)
            {
                left = middle + 1; 
            }
            else if(nums[middle] == target)
            {
                return middle;
            }
        }
        return -1;
    }
};
  • 因为 left == right 在区间 [left, right) 是没有意义的,所以 while (left < right),这里使用 < 。
  • if (nums[middle] > target) right 更新为 middle,因为当前 nums[middle] 不等于 target,去 左区间 继续寻找,而寻找 区间是 左闭右开区间,所以 right 更新为 middle,即:下一个 查询区间不会去比较 nums[middle]。

二、移除元素

27. 移除元素 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/remove-element/description/

        给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

        不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。

        元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2,_,_]
解释:你的函数函数应该返回 k = 2, 并且 nums 中的前两个元素均为 2。
你在返回的 k 个元素之外留下了什么并不重要(因此它们并不计入评测)。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3,_,_,_]
解释:你的函数应该返回 k = 5,并且 nums 中的前五个元素为 0,0,1,3,4。
注意这五个元素可以任意顺序返回。
你在返回的 k 个元素之外留下了什么并不重要(因此它们并不计入评测)。

1. 暴力破解

        两层 for 循环,一个 for 循环 遍历数组元素 ,第二个 for 循环更新数组。找到一个,后面的数字整体向前移一位。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int len = nums.size();

        for(int i = 0; i < len; i++)
        {
            if(nums[i] == val)
            {
                for(int j = i + 1; j < len; j++)
                {
                    nums[j - 1] = nums[j];
                }
                i--;  // 因为 i之后的数字都往前移了一位,所以这里i也往前移一位
                len--;
            }
        }
        return len;
    }
};

2. 双指针法

        通过一个 快指针和慢指针在一个 for 循环下 完成两个 for 循环的工作。

        用 快指针赋值给满指针,可以实现 暴力破解中 数字整体 向前移一位的 操作。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        // 快指针、慢指针
        int slowindex = 0;
        for(int fastindex = 0; fastindex < nums.size(); fastindex++)
        {
            if(nums[fastindex] != val)
            {
                nums[slowindex++] = nums[fastindex];
            }
        }
        return slowindex;
    }
};

三、有序数组的平方

977. 有序数组的平方 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/squares-of-a-sorted-array/description/

        给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

双指针法    

         数组是有序的, 只不过 负数平方之后 可能成为 最大数了。那么 数组平方的 最大值就在 数组的 两端,不是 最左边就是 最右边,不可能 是中间。 此时 可以考虑 双指针法,left 指向 起始位置,right 指向终止位置。

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        int len = nums.size() - 1;
        vector<int> result(nums.size());
        int left = 0, right = len;

        while(left <= right)
        {
            int le = nums[left] * nums[left];
            int ri = nums[right] * nums[right];
            if(le > ri)
            {
                result[len--] = le;
                left++;
            }
            else if(le <= ri)
            {
                result[len--] = ri;
                right--;
            }
        }
        return result;
    }
};

四、长度最小的子数组

209. 长度最小的子数组 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/minimum-size-subarray-sum/description/

        给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

 1. 暴力破解

         使用 两个 for 循环,然后 不断的寻找符合条件的 子序列。一个 for 循环滑动窗口的 起始位置,一个 for 循环为滑动窗口的终止位置,用两个 for 循环 完成了一个不断搜索区间的过程。

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int result = INT32_MAX;
        int len = nums.size();

        int pan = 0;

        for(int i = 0; i < len ; i++)
        {
            int sum = 0;
            for(int j = i; j < len; j++)
            {
                sum += nums[j];
                if(sum >= target)
                {
                    pan = j - i + 1;
                    result = result > pan ? pan : result;
                    break;
                }
            }
        }
        return result == INT32_MAX ? 0 : result;
    }
};

2. 滑动窗口

        滑动窗口,就是不断的 调节 子序列的 起始位置 和 终止位置,从而 得出我们要 想的 结果滑动窗口 只用一个 for 循环,那么 这个循环的索引,一定是表示 滑动窗口的终止位置。

        窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。

        窗口的 起始位置 如何移动:如果当前窗口的值大于等于 s 了,窗口就要向前移动了(也就是该缩小了)。

        窗口的 结束位置 如何移动:窗口的结束位置就是遍历数组的指针,也就是 for 循环里的索引。

        解题的关键在于 窗口的起始位置如何移动,

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        // 滑动窗口
        int result = INT32_MAX;
        int len = nums.size();
        int sum = 0;

        int j = 0;  // 窗口起始位置

        for(int i = 0; i < len; i++)
        {
            sum += nums[i];
            while(sum >= target)
            {
                int pan = i - j + 1;
                result = result > pan ? pan : result;
                sum -= nums[j++];
            }
        }
        return result == INT32_MAX ? 0 : result;
    }
};

五、螺旋矩阵 II

59. 螺旋矩阵 II - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/spiral-matrix-ii/description/

        给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]

        模拟 顺时针画矩阵的 过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

        由外向 内一圈一圈 这么 画下去。

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> result(n, vector<int>(n, 0));
        int take_x = 0, take_y = 0;  // 每次循环起始位置定位
        int nums = n / 2;  // 循环几次
        int mid = n / 2;  // 矩阵中心位置
        int count = 1;  // 填入的数字
        int offset = 1;   // 循环离右边界的距离
        int i, j;
        while(nums--)
        {
            i = take_x;
            j = take_y;

            // 循环一圈
            for(; j < n - offset; j++)
            {
                result[i][j] = count++;
            }
            for(; i < n - offset; i++)
            {
                result[i][j] = count++;
            }
            for(; j > take_x; --j)
            {
                result[i][j] = count++;
            }
            for(; i > take_y; --i)
            {
                result[i][j] = count++;
            }

            // 更新循环起点位置
            take_x++;
            take_y++;
            offset++;
        }

        // 奇数中间没填
        if(n % 2 != 0)
        {
            result[mid][mid] = count;
        }
        
        return result; 
    }
};

        这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。这也是坚持了每条边左闭右开的原则。


网站公告

今日签到

点亮在社区的每一天
去签到