lablelme标注的数据转成YOLO v8 格式

发布于:2024-09-18 ⋅ 阅读:(84) ⋅ 点赞:(0)

1 labelme 转 yolov8 格式

import json
import cv2
import numpy as np
import os
def json2yolo(path):
    # dic={'N_shaoxi':'0',   'N_qiaoqi':'1',   'N_qiaojie':'2',   'N_pianyi':'3',   'N_yiwu': '4', \
    #      'NV_shaoxi': '5', 'NV_qiaoqi': '6', 'NV_qiaojie': '7', 'NV_pianyi': '8', 'NV_yiwu': '9',\
    #      'R_shaoxi': '10',  'R_qiaoqi': '11',  'R_qiaojie': '12',  'R_pianyi': '13',  'R_yiwu': '14',\
    #      'XS_shaoxi': '15', "XS_qiaoqi": '16', 'XS_qiaojie': '17', 'XS_pianyi': '18', 'XS_yiwu': '19',
    #      '1': '0'}
    dic={'N_shaoxi':'0',   'N_qiaoqi':'1',   'N_qiaojie':'2',   'N_pianyi':'3',   'N_yiwu': '4', \
         'NV_shaoxi': '5', 'NV_qiaoqi': '6', 'NV_qiaojie': '7', 'NV_pianyi': '8', 'NV_yiwu': '9',\
         'R_shaoxi': '10',  'R_qiaoqi': '11',  'R_qiaojie': '12',  'R_pianyi': '13',  'R_yiwu': '14',\
         'XS_shaoxi': '15', "XS_qiaoqi": '16', 'XS_qiaojie': '17', 'XS_pianyi': '18', 'XS_yiwu': '19',
         'XP_shaoxi': '15', "XP_qiaoqi": '16', 'XP_qiaojie': '17', 'XP_pianyi': '18', 'XP_yiwu': '19'}
    #dic = {'N_shaoxi': '0', 'N_shaoxi': '1','N_qiaojie': '2','N_pianyi':'3','N_yiwu:'4'}  # 类别字典

    if ".json" in path:
        data = json.load(open(path,encoding="utf-8"))#读取带有中文的文件
        w=data["imageWidth"]#获取jaon文件里图片的宽高
        h=data["imageHeight"]
        all_line=''
        for i in  data["shapes"]:
            #归一化坐标点。并得到cx,cy,w,h
            [[x1,y1],[x2,y2]]=i['points']
            x1,x2=x1/w,x2/w
            y1,y2=y1/h,y2/h
            cx=(x1+x2)/2
            cy=(y1+y2)/2
            wi=abs(x2-x1)
            hi=abs(y2-y1)

            #将数据组装成yolo格式
            line="%s %.4f %.4f %.4f %.4f\n"%(dic[i['label']],cx,cy,wi,hi)#生成txt文件里每行的内容
            all_line+=line
       # print(all_line)
        filename = path.replace('json','txt')#将path里的json替换成txt,生成txt里相对应的文件路径
        fh = open(filename,'w',encoding='utf-8')
        fh.write(all_line)
        fh.close()
    else:
        filename = path.replace('.jpg', '.txt')  # 将path里的json替换成txt,生成txt里相对应的文件路径
        fh = open(filename, 'w', encoding='utf-8')
        fh.close()

path= "E:/_0904/"
path_list_sub = os.listdir(path)
print("path_list_sub", path_list_sub)
for path_sub in path_list_sub:
    json_path_list =os.listdir(path+path_sub)
    path_list2=[x for x in json_path_list]#获取所有json文件的路径
   # path_list2 = [x for x in json_path_list if ".json" in x]  # 获取所有json文件的路径
    print("len of path_list2 ",path_sub,len(path_list2))
    for p in path_list2:
        absolute_path= (path+path_sub+'/'+p)
        print("abs path",absolute_path)
        json2yolo(path+path_sub+'/'+p)

2 分为训练集&验证集合

import json
import cv2
import numpy as np
import os
import shutil
root_root_path = "。/0904/"
root_paths = os.listdir(root_root_path)
for root_path in root_paths:  # DATE NAMED DATA
    root_path = root_root_path+root_path+'/'
   # root_path = "E:/AOI_DATA/sort/data0705/"
    class_path_list = os.listdir(root_path)
    print("path_list_sub", class_path_list)
    all_file_path=[]
    index=0
    for class_path in class_path_list: #N NV R XS
        all_path_list =os.listdir(root_path+class_path)
        for file in all_path_list:
            # print()
            all_file_path.append((root_path + class_path + '/' + file))
           # os.path.exists(test_file.txt)
    print("file len ",len(all_file_path))

    txt_file_path=[]
    for file_path in all_file_path:
        if file_path[-3:]=="txt":
            print("file_path",file_path)
            txt_file_path.append(file_path)
    # print(txt_file_path)
    print("txt file len ",len(txt_file_path))
    train_index = 0
    valid_index = 0
    split_index = 0
    for tf in txt_file_path:
        if os.path.exists(tf[:-3]+'jpg'):
            if split_index % 5 != 0:
                #pass
                shutil.copy(tf,fr'.\X_DATA\train\labels')
                shutil.copy(tf[:-3]+'jpg', fr'.\train\images')
                train_index += 1

            else:
                shutil.copy(tf,fr'.\X_DATA\valid\labels')
                shutil.copy(tf[:-3]+'jpg', fr'.\X_DATA\valid\images')
                valid_index += 1
            split_index += 1


    print("train_index image num:", train_index)
    print("valid_index image num:", valid_index)
    print("split_index image num:", split_index)