RTC
- RTC(Real-Time Clock)是实时时钟模块,用于跟踪实际时间(年、月、日、时、分、秒),即使在系统断电或处于低功耗模式下也能保持时间的准确性。
特点
- 时间和日期跟踪
- 低功耗模式支持
- 可编程闹钟和定时器
- 备份寄存器
使用方法
- 开启RCC的High SPeed Clock的Crystal/Ceramic模式
- 配置时钟电路。
- RTC所用时钟
- 配置RTC
- active clock source
- active Calendar
- 使用USART1将其改为异步通信
- 具体代码
#include "main.h"
RTC_HandleTypeDef hrtc;
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_RTC_Init(void);
static void MX_USART1_UART_Init(void);
int __io_putchar(int ch)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_RTC_Init();
MX_USART1_UART_Init();
RTC_DateTypeDef date;
date.Year = 24;
date.Month = 9;
date.Date = 13;
date.WeekDay = RTC_WEEKDAY_FRIDAY;
HAL_RTC_SetDate(&hrtc, &date, RTC_FORMAT_BIN);
RTC_TimeTypeDef time;
time.Hours = 16;
time.Minutes = 10;
time.Seconds = 50;
HAL_RTC_SetTime(&hrtc, &time, RTC_FORMAT_BIN);
while (1)
{
HAL_RTC_GetDate(&hrtc, &date, RTC_FORMAT_BIN);
HAL_RTC_GetTime(&hrtc, &time, RTC_FORMAT_BIN);
printf("TIME:20%02d-%02d-%02d %02d:%02d:%02d \r\n",
date.Year, date.Month, date.Date, time.Hours, time.Minutes, time.Seconds);
HAL_Delay(1000);
}
}
ADC (Analog-to-Digital Converter)
- 模式转换器,负责将模拟信号转换成数字信号。
- 允许微控制器读取来自传感器或其它模拟输入的电压变化,并将其转换为可以处理的数字值。
- 使用方法
1. 查找电路图选择要进行模数转换的接口,我的是ADC的通道8
2. 设置ADC1的通道8的continuous为Enabled。
3. 开启USART1串口为异步通信,用于调试。
4. 设置RCC为Crystal
5. 配置时钟,设置ADC1为8MHZ。
6. 获取对应的值,并进行*3300/4095(其中3300是参考电压,4095是最大值ADC值)
7. 通过这种方式,你可以准确地将ADC读取的数字值转换为对应的电压值,从而实现对模拟信号的有效监测。
8. 代码示例
#include "main.h"
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART1_UART_Init(void);
int __io_putchar(int ch)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_USART1_UART_Init();
HAL_ADC_Start(&hadc1);
while (1)
{
uint32_t regVal = HAL_ADC_GetValue(&hadc1);
uint32_t mv = regVal * 3300 / 4095;
printf("voltage = %d mv\r\n", mv);
HAL_Delay(500);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL8;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
}
#endif