a√5G网络建设

发布于:2024-09-18 ⋅ 阅读:(72) ⋅ 点赞:(0)

题目描述

现需要在基城市进行5G网络建设,已经选取N个地点设置5G基站,编号固定为1到N,接下来需要各个基站之间使用光纤进行连接以确保基
站能互联互通,不同基站之间假设光纤的成本各不相同,且有些节点之间已经存在光纤相连。
请你设计算法,计算出能联通这些基站的最小成本是多少。
注意:基站的联通具有传递性,比如基站A与基站B架设了光纤,基站B与基站C也架设了光纤,则基站A与基站C视为可以互相联通。

输入描述

第一行输入表示基站的个数N,其中:

  • 0<N≤20

第二行输入表示具备光纤直连条件的基站对的数目M,其中:

  • O<M<N*(N-1)/2

从第三行开始连续输入M行数据,格式为

  • XYZP

其中:
X,Y表示基站的编号

  • 0<X≤N
  • 0<Y≤N
  • X≠Y

Z 表示在 X、Y之间架设光纤的成本

  • 0<Z<100

P 表示是否已存在光纤连接,0 表示未连接,1表示已连接

输出描述

如果给定条件,可以建设成功互联互通的5G网络,则输出最小的建设成本
如果给定条件,无法建设成功互联互通的5G网络,则输出-1

 /*
3
3
1 2 3 0
1 3 1 0
2 3 5 1
  */
class Edge implements Comparable<Edge> {
    int u, v, cost;
 
    Edge(int u, int v, int cost) {
        this.u = u;
        this.v = v;
        this.cost = cost;
    }
 
    // 用于边的排序
    @Override
    public int compareTo(Edge other) {
        return this.cost - other.cost;
    }
}
 
class UnionFind {
    private int[] parent;
 
    public UnionFind(int size) {
        parent = new int[size];
        for (int i = 0; i < size; i++) {
            parent[i] = i; // 初始化时每个节点的父节点是它自己
        }
    }
 
    // 查找元素的根节点,并进行路径压缩
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
 
    // 合并两个集合
    public boolean union(int x, int y) {
        int rootX = find(x);
        int rootY = find(y);
        if (rootX != rootY) {
            parent[rootY] = rootX;
            return true;
        }
        return false;
    }
}

public class G5网络建设Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int N = scanner.nextInt(); // 基站的个数
        int M = scanner.nextInt(); // 连接的个数
 
        List<Edge> edges = new ArrayList<>();
        for (int i = 0; i < M; i++) {
            int x = scanner.nextInt() - 1;
            int y = scanner.nextInt() - 1;
            int z = scanner.nextInt();
            int p = scanner.nextInt();
            if (p == 1) z = 0; // 如果已经连接,成本视为0
            edges.add(new Edge(x, y, z));
        }
 
        // 按照成本从小到大排序
        Collections.sort(edges);
 
        // 使用并查集
        UnionFind uf = new UnionFind(N);
        int totalCost = 0;
        int edgesUsed = 0;
 
        // 遍历所有边
        for (Edge edge : edges) {
            if (uf.union(edge.u, edge.v)) {
                totalCost += edge.cost;
                edgesUsed++;
                if (edgesUsed == N - 1) {
                    break; // 已经使用了足够的边
                }
            }
        }
 
        // 检查是否所有的基站都被联通
        if (edgesUsed == N - 1) {
            System.out.println(totalCost);
        } else {
            System.out.println(-1);
        }
    }
}
/*
3
3
1 2 3 0
1 3 1 0
2 3 5 0
4

3
1
1 2 5 0
-1

3
3
1 2 3 0
1 3 1 0
2 3 5 1
1
 */
public class day5G网络建设 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        // 基站数量
        int n = sc.nextInt();
        // 基站之间的关系
        int edgeNum = sc.nextInt();
        PriorityQueue<Edge> edges = new PriorityQueue<>(Comparator.naturalOrder());
        for (int i = 0; i < edgeNum; i++) {
            int v = sc.nextInt();
            int w = sc.nextInt();
            int price = sc.nextInt();
            price = sc.nextInt() == 1 ? 0 : price;
            Edge edge = new Edge(v, w, price);
            edges.add(edge);
        }
        // 标记该基站是否联通 默认false都没有使用过
        boolean[] marked = new boolean[n];
        // 统计成本
        int sumPrice = 0;
        // 统计已经形成多少边 用掉一个减一个
        int edgeUesd = n - 1;
        while (!edges.isEmpty()){
            if (edgeUesd <= 0){
                break;
            }
            // 获取到成本最低的两个基站点的信息
            Edge edge = edges.poll();
            int v = edge.v;
            int w = edge.w;
            // 如果其两个基站已经链接成功了,就不需要链接了
            if (marked[v%n] && marked[w%n] ){
                continue;
            }
            // 如果两个基站都没有使用联通过
            marked[v%n] = true;
            marked[w%n] = true;
            sumPrice += edge.price;
            edgeUesd--;
        }
        if (edgeUesd == 0){
            System.out.println(sumPrice);
        }else {
            System.out.println(-1);
        }
    }
    // 构造一个边的对象 用于存储控制台输入的基站之间的情况
    static class Edge implements Comparable<Edge>{
        private int v;
        private int w;
        private int price;

        public Edge(int v, int w, int price) {
            this.v = v;
            this.w = w;
            this.price = price;
        }
        @Override
        public int compareTo(Edge o) {
            return this.price - o.price;
        }
    }
}