Leecode_SQL50_1661. Average Time of Process per Machine

发布于:2024-10-12 ⋅ 阅读:(173) ⋅ 点赞:(0)

Leecode_SQL50_1661. Average Time of Process per Machine

Problem description

Table: Activity

±---------------±--------+
| Column Name | Type |
±---------------±--------+
| machine_id | int |
| process_id | int |
| activity_type | enum |
| timestamp | float |
±---------------±--------+
The table shows the user activities for a factory website.
(machine_id, process_id, activity_type) is the primary key (combination of columns with unique values) of this table.
machine_id is the ID of a machine.
process_id is the ID of a process running on the machine with ID machine_id.
activity_type is an ENUM (category) of type (‘start’, ‘end’).
timestamp is a float representing the current time in seconds.
‘start’ means the machine starts the process at the given timestamp and ‘end’ means the machine ends the process at the given timestamp.
The ‘start’ timestamp will always be before the ‘end’ timestamp for every (machine_id, process_id) pair.
It is guaranteed that each (machine_id, process_id) pair has a ‘start’ and ‘end’ timestamp.

There is a factory website that has several machines each running the same number of processes. Write a solution to find the average time each machine takes to complete a process.

The time to complete a process is the ‘end’ timestamp minus the ‘start’ timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.

The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.

Return the result table in any order.

The result format is in the following example.

Example 1:

Input:
Activity table:
±-----------±-----------±--------------±----------+
| machine_id | process_id | activity_type | timestamp |
±-----------±-----------±--------------±----------+
| 0 | 0 | start | 0.712 |
| 0 | 0 | end | 1.520 |
| 0 | 1 | start | 3.140 |
| 0 | 1 | end | 4.120 |
| 1 | 0 | start | 0.550 |
| 1 | 0 | end | 1.550 |
| 1 | 1 | start | 0.430 |
| 1 | 1 | end | 1.420 |
| 2 | 0 | start | 4.100 |
| 2 | 0 | end | 4.512 |
| 2 | 1 | start | 2.500 |
| 2 | 1 | end | 5.000 |
±-----------±-----------±--------------±----------+
Output:
±-----------±----------------+
| machine_id | processing_time |
±-----------±----------------+
| 0 | 0.894 |
| 1 | 0.995 |
| 2 | 1.456 |
±-----------±----------------+
Explanation:
There are 3 machines running 2 processes each.
Machine 0’s average time is ((1.520 - 0.712) + (4.120 - 3.140)) / 2 = 0.894
Machine 1’s average time is ((1.550 - 0.550) + (1.420 - 0.430)) / 2 = 0.995
Machine 2’s average time is ((4.512 - 4.100) + (5.000 - 2.500)) / 2 = 1.456

My solution

WITH st AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'start'
), 
en AS (
    SELECT machine_id, process_id, timestamp
    FROM Activity
    WHERE activity_type = 'end'
), 
b AS (
    SELECT st.machine_id, st.process_id, (en.timestamp - st.timestamp) AS time_taken
    FROM st 
        JOIN en 
            ON st.machine_id = en.machine_id 
            AND st.process_id = en.process_id
)

SELECT b.machine_id, ROUND(AVG(time_taken), 3) AS processing_time
FROM b
GROUP BY b.machine_id

Other solutions

select a1.machine_id, round(avg(a2.timestamp-a1.timestamp), 3) as processing_time 
from Activity a1
	join Activity a2 
		on a1.machine_id=a2.machine_id 
			and a1.process_id=a2.process_id
			and a1.activity_type='start' 
			and a2.activity_type='end'
group by a1.machine_id
Select a.machine_id,ROUND(AVG(b.timestamp-a.timestamp), 3)as processing_time 
from Activity a, Activity b
where a.process_id=b.process_id 
	AND a.machine_id=b.machine_id
	AND a.activity_type="start" 
	AND b.activity_type="end"
group by machine_id;

网站公告

今日签到

点亮在社区的每一天
去签到