lego-loam imageProjection.cpp源码注释(二)

发布于:2024-10-18 ⋅ 阅读:(62) ⋅ 点赞:(0)

继续来看回调函数

void cloudHandler(const sensor_msgs::PointCloud2ConstPtr& laserCloudMsg){

        // 1. Convert ros message to pcl point cloud
        copyPointCloud(laserCloudMsg);
        // 2. Start and end angle of a scan
        findStartEndAngle();
        // 3. Range image projection
        projectPointCloud();
        // 4. Mark ground points
        groundRemoval();
        // 5. Point cloud segmentation
        cloudSegmentation();
        // 6. Publish all clouds
        publishCloud();
        // 7. Reset parameters for next iteration
        resetParameters();
    }

一、groundRemoval()

void groundRemoval(){
        size_t lowerInd, upperInd;
        float diffX, diffY, diffZ, angle;
        // groundMat
        // -1, no valid info to check if ground of not
        //  0, initial value, after validation, means not ground
        //  1, ground
        for (size_t j = 0; j < Horizon_SCAN; ++j){
            for (size_t i = 0; i < groundScanInd; ++i){

                lowerInd = j + ( i )*Horizon_SCAN;
                upperInd = j + (i+1)*Horizon_SCAN;

                if (fullCloud->points[lowerInd].intensity == -1 ||
                    fullCloud->points[upperInd].intensity == -1){
                    // no info to check, invalid points
                    groundMat.at<int8_t>(i,j) = -1;
                    continue;
                }
                    
                diffX = fullCloud->points[upperInd].x - fullCloud->points[lowerInd].x;
                diffY = fullCloud->points[upperInd].y - fullCloud->points[lowerInd].y;
                diffZ = fullCloud->points[upperInd].z - fullCloud->points[lowerInd].z;

                angle = atan2(diffZ, sqrt(diffX*diffX + diffY*diffY) ) * 180 / M_PI;

                if (abs(angle - sensorMountAngle) <= 10){
                    groundMat.at<int8_t>(i,j) = 1;
                    groundMat.at<int8_t>(i+1,j) = 1;
                }
            }
        }
        // extract ground cloud (groundMat == 1)
        // mark entry that doesn't need to label (ground and invalid point) for segmentation
        // note that ground remove is from 0~N_SCAN-1, need rangeMat for mark label matrix for the 16th scan
        for (size_t i = 0; i < N_SCAN; ++i){
            for (size_t j = 0; j < Horizon_SCAN; ++j){
                if (groundMat.at<int8_t>(i,j) == 1 || rangeMat.at<float>(i,j) == FLT_MAX){
                    labelMat.at<int>(i,j) = -1;
                }
            }
        }
        if (pubGroundCloud.getNumSubscribers() != 0){
            for (size_t i = 0; i <= groundScanInd; ++i){
                for (size_t j = 0; j < Horizon_SCAN; ++j){
                    if (groundMat.at<int8_t>(i,j) == 1)
                        groundCloud->push_back(fullCloud->points[j + i*Horizon_SCAN]);
                }
            }
        }
    }

 //extern const int groundScanInd =12;

size_t i = 0; i < groundScanInd; ++i;在这一步循环中用到了头文件定义的groundScanInd,这个参数是lego-loam设置的分割地面点的最大线束,在小于12的线束中提取地面点。

lowerInd = j + ( i )*Horizon_SCAN;

upperInd = j + (i+1)*Horizon_SCAN;//通过两个相邻线束,计算在r-z面上两个点的方向向量和水平面的夹角。

具体可以看这篇文章,lego-loam采用的方法是这篇文章方法的简化版,从图上对梯度的理解就是OSo方向上,两个点pi-1和pi的方向向量。

fullCloud->points[lowerInd].intensity == -1 ||fullCloud->points[upperInd].intensity == -1

 //如果在点云投影到深度相片上的时候,出现了问题会导致points[lowerInd].intensity == -1,这个时候不确定是不是地面点,将其在GroundMat中的值设为-1。

计算xyz方向的差分,计算xy面上的半径r,计算diffz与r的夹角。

//extern const float sensorMountAngle = 0.0;

if (abs(angle - sensorMountAngle) <= 10){

groundMat.at<int8_t>(i,j) = 1;

groundMat.at<int8_t>(i+1,j) = 1;

}//如果angle角小于10°,认为是地面点。

for (size_t i = 0; i < N_SCAN; ++i){

for (size_t j = 0; j < Horizon_SCAN; ++j){

if (groundMat.at<int8_t>(i,j) == 1 || rangeMat.at<float>(i,j) == FLT_MAX){

labelMat.at<int>(i,j) = -1;}}}

//FLT_MAX这个值是单精度浮点数能表示的最大正数,但不包括无穷大。FLT_MAX是rangeMat的初始化值;

将距离为无穷大的点和地面点在labelMat中标记为-1,这一步应该是为后续操作准备的。

 最后保存并发布地面点!!

二、cloudSegmentation()

for (size_t i = 0; i < N_SCAN; ++i)

for (size_t j = 0; j < Horizon_SCAN; ++j)

if (labelMat.at<int>(i,j) == 0)

labelComponents(i, j);//要搞清楚这个循环的作用:

首先来看嵌套在cloudSegmentation中的函数labelComponents

labelComponents()

void labelComponents(int row, int col){
        // use std::queue std::vector std::deque will slow the program down greatly
        float d1, d2, alpha, angle;
        int fromIndX, fromIndY, thisIndX, thisIndY; 
        bool lineCountFlag[N_SCAN] = {false};

        queueIndX[0] = row;
        queueIndY[0] = col;
        int queueSize = 1;
        int queueStartInd = 0;
        int queueEndInd = 1;

        allPushedIndX[0] = row;
        allPushedIndY[0] = col;
        int allPushedIndSize = 1;
        
        while(queueSize > 0){
            // Pop point
            fromIndX = queueIndX[queueStartInd];
            fromIndY = queueIndY[queueStartInd];
            --queueSize;
            ++queueStartInd;
            // Mark popped point
            labelMat.at<int>(fromIndX, fromIndY) = labelCount;
            //labelCount未赋值,初值为0。
            // Loop through all the neighboring grids of popped grid
            for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){
                // new index
                thisIndX = fromIndX + (*iter).first;
                thisIndY = fromIndY + (*iter).second;
                // index should be within the boundary
                if (thisIndX < 0 || thisIndX >= N_SCAN)
                    continue;
                // at range image margin (left or right side)
                if (thisIndY < 0)
                    thisIndY = Horizon_SCAN - 1;
                if (thisIndY >= Horizon_SCAN)
                    thisIndY = 0;
                // prevent infinite loop (caused by put already examined point back)
                if (labelMat.at<int>(thisIndX, thisIndY) != 0)
                    continue;

                d1 = std::max(rangeMat.at<float>(fromIndX, fromIndY), 
                              rangeMat.at<float>(thisIndX, thisIndY));
                d2 = std::min(rangeMat.at<float>(fromIndX, fromIndY), 
                              rangeMat.at<float>(thisIndX, thisIndY));

                if ((*iter).first == 0)
                    alpha = segmentAlphaX;
                else
                    alpha = segmentAlphaY;

                angle = atan2(d2*sin(alpha), (d1 -d2*cos(alpha)));

                if (angle > segmentTheta){

                    queueIndX[queueEndInd] = thisIndX;
                    queueIndY[queueEndInd] = thisIndY;
                    ++queueSize;
                    ++queueEndInd;

                    labelMat.at<int>(thisIndX, thisIndY) = labelCount;
                    lineCountFlag[thisIndX] = true;

                    allPushedIndX[allPushedIndSize] = thisIndX;
                    allPushedIndY[allPushedIndSize] = thisIndY;
                    ++allPushedIndSize;
                }
            }
        }

        // check if this segment is valid
        bool feasibleSegment = false;
        if (allPushedIndSize >= 30)
            feasibleSegment = true;
        else if (allPushedIndSize >= segmentValidPointNum){
            int lineCount = 0;
            for (size_t i = 0; i < N_SCAN; ++i)
                if (lineCountFlag[i] == true)
                    ++lineCount;
            if (lineCount >= segmentValidLineNum)
                feasibleSegment = true;            
        }
        // segment is valid, mark these points
        if (feasibleSegment == true){
            ++labelCount;
        }else{ // segment is invalid, mark these points
            for (size_t i = 0; i < allPushedIndSize; ++i){
                labelMat.at<int>(allPushedIndX[i], allPushedIndY[i]) = 999999;
            }
        }
    }

uint16_t *allPushedIndX; // array for tracking points of a segmented object

uint16_t *allPushedIndY;

uint16_t *queueIndX; // array for breadth-first search process of segmentation, for speed

uint16_t *queueIndY;这是几个定义

了解一下什么是广度优先搜索:借用一下大佬的图片,有一个初步的了解即可

lego-loam使用广度优先搜索可以提高代码的运行效率。

深度优先搜索(DFS)和广度优先搜索(BFS)_深度优先搜索和广度优先搜索对比-CSDN博客

 初始化队列中的第一个元素,弹出(pop)队列中的第一个元素。

fromIndX = queueIndX[queueStartInd];

fromIndY = queueIndY[queueStartInd];

通过当前点寻找相邻点

for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){

//neighborIterator.begin()关于neighborIterator的定义在代码中没有体现,可能藏在哪一个头文件里??猜测可能是四邻域,即【0,0】,【0,1】,【1,0】,【1,1】。

thisIndX = fromIndX + (*iter).first;

thisIndY = fromIndY + (*iter).second;

如果邻居点已经被标记(即 labelMat.at<int>(thisIndX, thisIndY) != 0),则使用 continue 语句跳过当前循环的剩余部分,直接开始下一次循环。这样做可以避免将已经检查过的点再次加入队列,从而防止无限循环。

if ((*iter).first == 0):这是一个条件判断,用于检查当前邻居点的 x 坐标偏移量是否为0。iter 是一个迭代器,指向 neighborIterator 集合中的一个元素,该元素是一个 std::pair<int, int>,其中 first 成员表示 x 坐标的偏移量,second 成员表示 y 坐标的偏移量。

extern const float segmentAlphaX = ang_res_x / 180.0 * M_PI;

extern const float segmentAlphaY = ang_res_y / 180.0 * M_PI;

//extern const float ang_res_x = 0.2;

//extern const float ang_res_y = 2.0;

  d1 = std::max(rangeMat.at<float>(fromIndX, fromIndY), 
                              rangeMat.at<float>(thisIndX, thisIndY));
  d2 = std::min(rangeMat.at<float>(fromIndX, fromIndY), 
                              rangeMat.at<float>(thisIndX, thisIndY));
  if ((*iter).first == 0)
      alpha = segmentAlphaX;
  else
      alpha = segmentAlphaY;
  angle = atan2(d2*sin(alpha), (d1 -d2*cos(alpha)));

 这一步是在算什么?参考大佬的文章,我们来看一张图片

LeGO-LOAM源码解析2: imageProjection_lego loam imageprojection-CSDN博客

 这样我们就很清楚这一步计算的angle是什么了,然后我们来看angle有什么用?

extern const float segmentTheta = 60.0/180.0*M_PI; // decrese this value may improve accuracy

 通过判断angle是否大于60°,来判断索引点与相邻点是否在一个面上。

如果angle大于60°,就将相邻点加入队列,labelMat标记为0,下一次再遍历相邻点的相邻点。

 将所有angle大于60°的相邻点(前提是从一个点开始搜索的子子孙孙),加入allPushedInd,为后面聚类做准备。lineCountFlag[thisIndX] = true;如果大于60°的相邻点数目比较少,就考虑在同一行上的大于60°的相邻点数目,如果这个数目大于3,则也认为是一个有效聚类。

if (allPushedIndSize >= 30)

feasibleSegment = true;

如果allPushedInd点数目大于30,认为是一个有效聚类。

//extern const int segmentValidPointNum = 5;

//extern const int segmentValidLineNum = 3;

如果allPushedInd数目小于30,大于5

else if (allPushedIndSize >= segmentValidPointNum){

int lineCount = 0;

for (size_t i = 0; i < N_SCAN; ++i)

if (lineCountFlag[i] == true)

++lineCount;//这个数目大于3,则也认为是一个有效聚类。

if (lineCount >= segmentValidLineNum)

feasibleSegment = true;

}

完成一个聚类之后,lableCount加1。也就是这个聚类标记为1,下一个聚类标记为2、3、4....

如果数目都不满足聚类条件,就标记为99999。

然后我们在看cloudSegmentation()!!

cloudSegmentation()

void cloudSegmentation(){
        // segmentation process
        for (size_t i = 0; i < N_SCAN; ++i)
            for (size_t j = 0; j < Horizon_SCAN; ++j)
                if (labelMat.at<int>(i,j) == 0)
                    labelComponents(i, j);

        int sizeOfSegCloud = 0;
        // extract segmented cloud for lidar odometry
        for (size_t i = 0; i < N_SCAN; ++i) {

            segMsg.startRingIndex[i] = sizeOfSegCloud-1 + 5;

            for (size_t j = 0; j < Horizon_SCAN; ++j) {
                if (labelMat.at<int>(i,j) > 0 || groundMat.at<int8_t>(i,j) == 1){
                    // outliers that will not be used for optimization (always continue)
                    if (labelMat.at<int>(i,j) == 999999){
                        if (i > groundScanInd && j % 5 == 0){
                            outlierCloud->push_back(fullCloud->points[j + i*Horizon_SCAN]);
                            continue;
                        }else{
                            continue;
                        }
                    }
                    // majority of ground points are skipped
                    if (groundMat.at<int8_t>(i,j) == 1){
                        if (j%5!=0 && j>5 && j<Horizon_SCAN-5)
                            continue;
                    }
                    // mark ground points so they will not be considered as edge features later
                    segMsg.segmentedCloudGroundFlag[sizeOfSegCloud] = (groundMat.at<int8_t>(i,j) == 1);
                    // mark the points' column index for marking occlusion later
                    segMsg.segmentedCloudColInd[sizeOfSegCloud] = j;
                    // save range info
                    segMsg.segmentedCloudRange[sizeOfSegCloud]  = rangeMat.at<float>(i,j);
                    // save seg cloud
                    segmentedCloud->push_back(fullCloud->points[j + i*Horizon_SCAN]);
                    // size of seg cloud
                    ++sizeOfSegCloud;
                }
            }

            segMsg.endRingIndex[i] = sizeOfSegCloud-1 - 5;
        }
        
        // extract segmented cloud for visualization
        if (pubSegmentedCloudPure.getNumSubscribers() != 0){
            for (size_t i = 0; i < N_SCAN; ++i){
                for (size_t j = 0; j < Horizon_SCAN; ++j){
                    if (labelMat.at<int>(i,j) > 0 && labelMat.at<int>(i,j) != 999999){
                        segmentedCloudPure->push_back(fullCloud->points[j + i*Horizon_SCAN]);
                        segmentedCloudPure->points.back().intensity = labelMat.at<int>(i,j);
                    }
                }
            }
        }
    }

处理不会被优化的离群点!!

for (size_t i = 0; i < N_SCAN; ++i) {

segMsg.startRingIndex[i] = sizeOfSegCloud-1 + 5;//去除每束激光的前5个点。

segMsg.endRingIndex[i] = sizeOfSegCloud-1 - 5;//去除每束激光的后5个点。

1、对于已经被标记的点,其中数目不满足聚类条件的点,选择能被5整除的加入到离群点中,其他的跳过。(至于为什么是被5整除,我感觉是一种抽稀)

2、// majority of ground points are skipped大部分地面点被跳过

if (groundMat.at<int8_t>(i,j) == 1){

if (j%5!=0 && j>5 && j<Horizon_SCAN-5)??只处理十几个地面点吗?

continue;}

3、排除零散的点和大部分地面点之后,保存分割后的点云数据!!

//记录一些分割后点云的信息,首先记录点是地面点

segMsg.segmentedCloudGroundFlag[sizeOfSegCloud] = (groundMat.at<int8_t>(i,j) == 1);

// 记录点的列索引

segMsg.segmentedCloudColInd[sizeOfSegCloud] = j;

// save range info

segMsg.segmentedCloudRange[sizeOfSegCloud] = rangeMat.at<float>(i,j);

// 保存分割后的点云

segmentedCloud->push_back(fullCloud->points[j + i*Horizon_SCAN]);

// size of seg cloud

++sizeOfSegCloud;分割后点云数目加1

4、提取不包括地面点的分割后点云,用于可视化!!、

// extract segmented cloud for visualization

if (pubSegmentedCloudPure.getNumSubscribers() != 0){

for (size_t i = 0; i < N_SCAN; ++i){

for (size_t j = 0; j < Horizon_SCAN; ++j){

if (labelMat.at<int>(i,j) > 0 && labelMat.at<int>(i,j) != 999999){

segmentedCloudPure->push_back(fullCloud->points[j + i*Horizon_SCAN]);

segmentedCloudPure->points.back().intensity = labelMat.at<int>(i,j);}}}}

segmentedCloudPure的区别在于不包括地面点!!


今日签到

点亮在社区的每一天
去签到