2022高等代数上【南昌大学】

发布于:2024-12-06 ⋅ 阅读:(26) ⋅ 点赞:(0)

2022 高等代数

  1. 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)f(x) p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)g(x)

⇒ \Rightarrow

p ( x ) p(x) p(x) 是不可约多项式,且 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)f(x)g(x) ,若 p ( x ) ∤ f ( x ) p(x) \nmid f(x) p(x)f(x),则两多项式互素,即 ( p ( x ) , f ( x ) ) = 1 (p(x),f(x))=1 (p(x),f(x))=1,于是 p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)g(x)

⇐ \Leftarrow

p ( x ) p(x) p(x) 可约,设 p ( x ) = p 1 ( x ) p 2 ( x ) p(x)=p_1(x)p_2(x) p(x)=p1(x)p2(x) ∂ ( p i ( x ) ) = deg ⁡ p i ( x ) < deg ⁡ p ( x ) = ∂ ( p ( x ) )   ( i = 1 , 2 ) \partial \left( p_i(x) \right) = \deg p_i(x) < \deg p(x) = \partial \left( p(x) \right)\,(i=1,2) (pi(x))=degpi(x)<degp(x)=(p(x))(i=1,2) p ( x ) ∣ p 1 ( x ) p 2 ( x ) p(x) \mid p_1(x)p_2(x) p(x)p1(x)p2(x) ,但 p ( x ) ∤ p 1 ( x ) p(x) \nmid p_1(x) p(x)p1(x) p ( x ) ∤ p 2 ( x ) p(x) \nmid p_2(x) p(x)p2(x)

  1. 计算行列式

∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ . \begin{vmatrix} 2^n - 2 & 2^{n-1} - 2 & \cdots & 2^3 - 2 & 2^2 - 2 \\ 3^n - 3 & 3^{n-1} - 3 & \cdots & 3^3 - 3 & 3^2 - 3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n^n - n & n^{n-1} - n & \cdots & n^3 - n & n^2 - n \\ \end{vmatrix}. 2n23n3nnn2n123n13nn1n232333n3n222323n2n .

法 1
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 2 − 3 ⋮ ⋮ ⋱ ⋮ n n − n n n − 1 − n ⋯ n 2 − n ∣ = ∣ 2 n − 1 ( 2 − 1 ) 2 n − 2 ( 2 − 1 ) ⋯ 2 ( 2 − 1 ) 3 n − 1 ( 3 − 1 ) 3 n − 2 ( 3 − 1 ) ⋯ 3 ( 3 − 1 ) ⋮ ⋮ ⋱ ⋮ n n − 1 ( n − 1 ) n n − 2 ( n − 1 ) ⋯ n ( n − 1 ) ∣ = ( n − 1 ) ! ∣ 2 n − 1 2 n − 2 ⋯ 2 3 n − 1 3 n − 2 ⋯ 3 ⋮ ⋮ ⋱ ⋮ n n − 1 n n − 2 ⋯ n ∣ = n ! ( n − 1 ) ! ∣ 2 n − 2 2 n − 3 ⋯ 1 3 n − 2 3 n − 3 ⋯ 1 ⋮ ⋮ ⋱ ⋮ n n − 2 n n − 3 ⋯ 1 ∣ = n ! ( n − 1 ) ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ 2 ≤ j < i ≤ n ( i − j ) = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{cccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccc} {2^{n - 1} (2 - 1)} & {2^{n - 2} (2 - 1)} & \cdots & {2 (2 - 1)} \\ {3^{n - 1} (3 - 1)} & {3^{n - 2} (3 - 1)} & \cdots & {3 (3 - 1)} \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1} (n - 1)} & {n^{n - 2} (n - 1)} & \cdots & {n (n - 1)} \end{array} \right| \\ &= (n - 1)! \left| \begin{array}{cccc} {2^{n - 1}} & {2^{n - 2}} & \cdots & 2 \\ {3^{n - 1}} & {3^{n - 2}} & \cdots & 3 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1}} & {n^{n - 2}} & \cdots & n \end{array} \right| \\ &= n! (n - 1)! \left| \begin{array}{cccc} {2^{n - 2}} & {2^{n - 3}} & \cdots & 1 \\ {3^{n - 2}} & {3^{n - 3}} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 2}} & {n^{n - 3}} & \cdots & 1 \end{array} \right| \\ &= n! (n - 1)! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{2 \le j < i \le n} (i - j) \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*} 2n23n3nnn2n123n13nn1n222323n2n = 2n1(21)3n1(31)nn1(n1)2n2(21)3n2(31)nn2(n1)2(21)3(31)n(n1) =(n1)! 2n13n1nn12n23n2nn223n =n!(n1)! 2n23n2nn22n33n3nn3111 =n!(n1)!(1)2(n1)(n2)2j<in(ij)=(1)2(n1)(n2)k=1nk!
法 2
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = ∣ 1 1 1 ⋯ 1 1 0 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 0 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = n ! ∣ 1 1 1 ⋯ 1 1 1 2 n − 1 2 n − 2 ⋯ 2 2 2 1 3 n − 1 3 n − 2 ⋯ 3 2 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n − 1 n n − 2 ⋯ n 2 n ∣ = n ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∣ 1 1 1 ⋯ 1 1 1 2 2 2 ⋯ 2 n − 2 2 n − 1 1 3 3 2 ⋯ 3 n − 2 3 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n 2 ⋯ n n − 2 n n − 1 ∣ = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{ccccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ 0 & {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| \\ &= n! \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & {2^{n - 1}} & {2^{n - 2}} & \cdots & {2^2} & 2 \\ 1 & {3^{n - 1}} & {3^{n - 2}} & \cdots & {3^2} & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & {n^{n - 1}} & {n^{n - 2}} & \cdots & {n^2} & n \end{array} \right| \\ &= n! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & {2^2} & \cdots & {2^{n - 2}} & {2^{n - 1}} \\ 1 & 3 & {3^2} & \cdots & {3^{n - 2}} & {3^{n - 1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & n & {n^2} & \cdots & {n^{n - 2}} & {n^{n - 1}} \end{array} \right| \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*}


网站公告

今日签到

点亮在社区的每一天
去签到