本篇指南将教你如何使用Python和Selenium库来构建一个自动化图像引擎,该引擎能够根据指定参数自动截取网页快照,并将生成的图片存储到云端。此工具还可以通过消息队列接收任务指令,非常适合需要批量处理网页截图的应用场景。
1. 准备环境
确保你已经安装了Python和必要的库:
pip install selenium oss2 kafka-python-ng
2. 创建配置文件
创建一个简单的config.ini
文件来存储你的OSS和Kafka设置:
[oss]
access_key_id = YOUR_OSS_ACCESS_KEY_ID
access_key_secret = YOUR_OSS_ACCESS_KEY_SECRET
bucket_name = YOUR_BUCKET_NAME
endpoint = http://oss-cn-hangzhou.aliyuncs.com
[kafka]
bootstrap_servers = localhost:9092
topic = your_topic_name
notify_topic = your_notify_topic
consumer_group = your_consumer_group
[engine]
driver_path = path/to/chromedriver
image_path = path/to/screenshots
param_path = path/to/params
site_base_path = https://example.com
3. 设置日志记录
为程序添加基本的日志记录功能,以便于调试:
import logging
from logging.handlers import TimedRotatingFileHandler
import os
logger = logging.getLogger('image_engine')
logger.setLevel(logging.DEBUG)
log_file = 'logs/image_engine.log'
os.makedirs('logs', exist_ok=True)
handler = TimedRotatingFileHandler(log_file, when='midnight', backupCount=7, encoding='utf-8')
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
4. 初始化Selenium WebDriver
初始化Chrome WebDriver,并设置窗口最大化:
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
# 读取配置文件
import configparser
config = configparser.ConfigParser()
config.read('config.ini')
service = Service(config.get('engine', 'driver_path'))
driver = webdriver.Chrome(service=service)
driver.maximize_window()
5. 图像处理逻辑
编写一个函数来处理每个Kafka消息,打开指定网页,等待页面加载完成,然后保存截图:
from kafka import KafkaConsumer, KafkaProducer
import json
import time
from datetime import datetime
import oss2
def process_task(msg):
task_params = json.loads(msg.value)
item_id = task_params['itemId']
param_value = task_params['paramValue']
logger.info(f"开始处理项【{item_id}】对应参数【{param_value}】")
# 构建请求链接
url = f"{config.get('engine', 'site_base_path')}/view?param={param_value}&id={item_id}"
driver.get(url)
try:
# 简单等待页面加载
time.sleep(3) # 根据需要调整或替换为WebDriverWait
# 生成截图文件名
today = datetime.now().strftime('%Y-%m-%d')
screenshot_dir = os.path.join(config.get('engine', 'image_path'), 'images', today)
os.makedirs(screenshot_dir, exist_ok=True)
fname = os.path.join(screenshot_dir, f"{item_id}_{param_value}.png")
driver.save_screenshot(fname)
logger.info(f"保存截图到 {fname}")
# 上传至OSS(省略具体实现,根据实际情况添加)
upload_to_oss(fname)
# 发送完成通知
notify_completion(item_id, param_value, fname)
logger.info(f"完成处理项【{item_id}】对应参数【{param_value}】")
except Exception as e:
logger.error(f"处理项【{item_id}】对应参数【{param_value}】时发生异常: {e}")
def upload_to_oss(file_path):
"""上传文件到阿里云OSS"""
auth = oss2.Auth(config.get('oss', 'access_key_id'), config.get('oss', 'access_key_secret'))
bucket = oss2.Bucket(auth, config.get('oss', 'endpoint'), config.get('oss', 'bucket_name'))
remote_path = os.path.relpath(file_path, config.get('engine', 'image_path'))
bucket.put_object_from_file(remote_path, file_path)
def notify_completion(item_id, param_value, image_path):
"""发送完成通知"""
producer.send(config.get('kafka', 'notify_topic'), {
'itemId': item_id,
'paramValue': param_value,
'imagePath': image_path
})
6. 启动Kafka消费者
启动Kafka消费者,监听消息并调用处理函数:
if __name__ == "__main__":
consumer = KafkaConsumer(
config.get('kafka', 'topic'),
bootstrap_servers=config.get('kafka', 'bootstrap_servers').split(','),
group_id=config.get('kafka', 'consumer_group'),
auto_offset_reset='latest',
enable_auto_commit=True,
value_deserializer=lambda m: m.decode('utf-8')
)
for msg in consumer:
try:
process_task(msg)
except Exception as ex:
logger.error(f"消费消息发生异常: {ex}")
总结
通过上述简化步骤,你可以快速搭建一个基于Python和Selenium的图像引擎。该引擎能够从Kafka接收任务指令,访问指定网站,截取页面快照,并将截图上传到阿里云OSS。此版本去除了不必要的复杂性,专注于核心功能的实现。