基于知识图谱的医疗问答系统 docker-compose

发布于:2024-12-19 ⋅ 阅读:(18) ⋅ 点赞:(0)

一、搭建 Neo4j 图数据库

1、方式选择

  • windows 使用 Neo4j Desktop (2024-12-09开始 Neo4j desktop 无法打开表现为三个/四个僵尸进程,查看本地日志会发现[403]无法获取到https://dist.neo4j.org/neo4j-desktop/win/latest.yml这个路径的资源。解决方案:断网打开 Neo4j Desktop / Neo4j Desktop 1.5.8 Launches Zombie Processes Only - Neo4j Graph Platform / Desktop - Neo4j Online Community
  • 云环境 dockerfile + docker-compose (部署构建简单易懂无需专注 jdk 版本,优先考虑)
  • 最终理想化:kubernetes 部署 (符合主流技术导向,虽说部署较复杂且多坑但是企业级以及行业主导地位等因素使用 k8s 部署还是最佳实践)

首次部署优先采用 dockerfile + docker-compose

2、Dockerfile+docker-compose部署neo4j容器

2.1、更新 yum 镜像源

bash

rm -rf /etc/yum.repos.d/*
wget -O /etc/yum.repos.d/centos7.repo http://mirrors.aliyun.com/repo/Centos-7.repo
wget -O /etc/yum.repos.d/epel-7.repo http://mirrors.aliyun.com/repo/epel-7.repo
wget -O /etc/yum.repos.d/docker-ce.repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

2.2、安装 docker-ce 社区版

bash

yum install -y docker-ce

2.3、配置镜像加速

bash

cat > /etc/docker/daemon.json << EOF
{
  "exec-opts": ["native.cgroupdriver=systemd"],
  "registry-mirrors": [
    "https://dockerhub.icu",
    "https://hub.rat.dev",
    "https://docker.wanpeng.top",
    "https://doublezonline.cloud",
    "https://docker.mrxn.net",
    "https://docker.anyhub.us.kg",
    "https://dislabaiot.xyz",
    "https://docker.fxxk.dedyn.io"
  ]
}
EOF

systemctl daemon-reload && systemctl restart docker && systemctl enable docker

2.4、安装 Docker Compose

Releases · docker/compose

2.4.1、下载 Docker Compose 二进制包

bash

curl -L "https://github.com/docker/compose/releases/download/v2.5.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
  • -L: 是curl的一个选项,表示跟随重定向。如果下载链接是重定向的,这个选项会让curl自动跟踪到最后的目标地址。
  • "https://github.com/docker/compose/releases/download/v2.5.1/docker-compose-$(uname -s)-$(uname -m)": 这是Docker Compose的下载URL,其中v2.5.1指定了要下载的Docker Compose版本号。$(uname -s) 和 $(uname -m) 是shell命令,分别返回当前系统的类型(如Linux)和机器的硬件架构(如x86_64),这样可以确保下载与当前系统架构相匹配的Docker Compose二进制文件。
  • -o /usr/local/bin/docker-compose-o 或 --output 指定了下载文件的保存位置及名称。这里,文件会被保存为 /usr/local/bin/docker-compose,这是Docker Compose常见的安装路径,将其放在此处可以使其在PATH环境变量中,从而可以直接在命令行中通过docker-compose命令调用。
2.4.2、设置可执行权限

bash

chmod +x /usr/local/bin/docker-compose
2.4.3、查看版本

bash

docker-compose -v

2.5、创建目录结构

bash

mkdir -p neo4j-docker/{conf,data,import,logs} && touch neo4j-docker/conf/neo4j.conf

chown -R neo4j:neo4j ./{conf,data,import,logs}

chmod 755 ./{conf,data,logs,import}

tree -L 2 neo4j-docker
neo4j-docker
├── conf
│   └── neo4j.conf
├── data
├── import
└── logs

2.6、编写neo4j.conf配置文件

bash

cat > /root/neo4j-docker/conf/neo4j.conf <<  EOF
server.directories.import=/var/lib/neo4j/import
server.memory.pagecache.size=512M

server.default_listen_address=0.0.0.0
dbms.security.allow_csv_import_from_file_urls=true
server.directories.logs=/logs
EOF

2.7、编写 dockerfile 文件

dockerfile

cat > /root/neo4j-docker/Dockerfile << EOF
# 使用官方 Neo4j 最新版本镜像作为基础镜像
FROM neo4j:latest

# 设置环境变量,仅用于配置 Neo4j 认证
ENV NEO4J_AUTH=neo4j/neo4jpassword

# 拷贝本地的配置文件到容器中
COPY ./conf/neo4j.conf /var/lib/neo4j/conf/

# 定义容器启动时执行的命令
CMD ["neo4j"]
EOF

2.8、构建ne4j容器镜像

bash

# 命令位置需要与Dockerfile位置同级
docker build -t my_neo4j:v1 .

2.9、编写docker-compose.yaml文件

有坑:neo4j 5.x 版本所需密码位数需要在 8 位以上

yaml

version: '3'
services:
  neo4j:
    build: .
    image: my_neo4j:v1
    container_name: neo4j_container
    restart: always
    ports:
      - "7474:7474"
      - "7687:7687"
    environment:
      - NEO4J_AUTH=neo4j/neo4jpassword
    volumes:
      - ./data:/data
      - ./logs:/logs
      - ./import:/var/lib/neo4j/import
      - ./conf:/var/lib/neo4j/conf
    command: ["neo4j"]

2.10、运行docker-compose

bash

docker-compose -f docker-compose.yaml up -d

2.11、浏览器登录 neo4j

bash

http://192.168.112.30:7474

# 输入用户名:neo4j
# 输入密码:neo4jpassword

二、Neo4j 初始配置

1、清空 Neo4j 数据库

cypher

MATCH (n) DETACH DELETE n

三、PyCharm 项目安装必备库

1、py2neo 库

python

pip install py2neo
  • 简化 Neo4j 连接和查询

    • 连接到 Neo4jpy2neo 提供了简单易用的接口来连接到 Neo4j 数据库,支持 HTTP 和 Bolt 协议。
    • 执行 Cypher 查询py2neo 允许你直接执行 Cypher 查询(Neo4j 的图查询语言),并以 Python 对象的形式返回结果。
  • 创建和管理图数据

    • 创建节点和关系py2neo 提供了高级抽象,允许你像操作 Python 对象一样创建和管理 Neo4j 中的节点和关系。你可以使用 Node 和 Relationship 类来表示图中的实体,并将它们保存到数据库中。
    • 批量操作py2neo 支持批量创建节点和关系,提高性能,减少网络往返次数。

2、pymongo 库

python

pip install pymongo
  • 用于连接和操作 MongoDB 数据库,读取、处理并重新插入医疗数据。
  • 提供了高效的 CRUD 操作,支持批量数据处理。

3、lxml 库

python

pip install lxml
  • 用于解析存储在 MongoDB 中的 HTML 文档,提取有用的医疗检查信息(如疾病名称、描述等)。
  • 通过 XPath 提取数据,并进行必要的清理和格式化。

四、python 连接 Neo4j

1、浏览器 browser 查看Neo4j 连接状态

cypher

:server status

记住 URL (不是传统意义上的 http://,以及默认的端口号7474)

2、修改源文件中 Graph 连接格式

python

import os
import json
from py2neo import Graph,Node

class MedicalGraph:
    def __init__(self):
        cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
        self.data_path = os.path.join(cur_dir, 'data/medical.json')
        self.g = Graph("neo4j://192.168.112.30:7687", auth=("neo4j", "neo4jpassword"))

build_medicalgraph.py 和 answer_search.py 两个原文件中的 self.g = Graph() 的连接格式都更改为上述代码中的格式。

五、PyCharm 导入医疗知识图谱

1、读取文件

python

# 读取文件
    def read_nodes(self):
        # 共7类节点
        drugs = [] # 药品
        foods = [] # 食物
        checks = [] # 检查
        departments = [] #科室
        producers = [] #药品大类
        diseases = [] #疾病
        symptoms = []#症状

        disease_infos = []#疾病信息

        # 构建节点实体关系
        rels_department = [] # 科室-科室关系
        rels_noteat = [] # 疾病-忌吃食物关系
        rels_doeat = [] # 疾病-宜吃食物关系
        rels_recommandeat = [] # 疾病-推荐吃食物关系
        rels_commonddrug = [] # 疾病-通用药品关系
        rels_recommanddrug = [] # 疾病-热门药品关系
        rels_check = [] # 疾病-检查关系
        rels_drug_producer = [] # 厂商-药物关系

        rels_symptom = [] #疾病症状关系
        rels_acompany = [] # 疾病并发关系
        rels_category = [] # 疾病与科室之间的关系


        count = 0
        for data in open(self.data_path, encoding='utf8', mode='r'):
            disease_dict = {}
            count += 1
            print(count)
            data_json = json.loads(data)
            disease = data_json['name']
            disease_dict['name'] = disease
            diseases.append(disease)
            disease_dict['desc'] = ''
            disease_dict['prevent'] = ''
            disease_dict['cause'] = ''
            disease_dict['easy_get'] = ''
            disease_dict['cure_department'] = ''
            disease_dict['cure_way'] = ''
            disease_dict['cure_lasttime'] = ''
            disease_dict['symptom'] = ''
            disease_dict['cured_prob'] = ''

            if 'symptom' in data_json:
                symptoms += data_json['symptom']
                for symptom in data_json['symptom']:
                    rels_symptom.append([disease, symptom])

            if 'acompany' in data_json:
                for acompany in data_json['acompany']:
                    rels_acompany.append([disease, acompany])

            if 'desc' in data_json:
                disease_dict['desc'] = data_json['desc']

            if 'prevent' in data_json:
                disease_dict['prevent'] = data_json['prevent']

            if 'cause' in data_json:
                disease_dict['cause'] = data_json['cause']

            if 'get_prob' in data_json:
                disease_dict['get_prob'] = data_json['get_prob']

            if 'easy_get' in data_json:
                disease_dict['easy_get'] = data_json['easy_get']

            if 'cure_department' in data_json:
                cure_department = data_json['cure_department']
                if len(cure_department) == 1:
                     rels_category.append([disease, cure_department[0]])
                if len(cure_department) == 2:
                    big = cure_department[0]
                    small = cure_department[1]
                    rels_department.append([small, big])
                    rels_category.append([disease, small])

                disease_dict['cure_department'] = cure_department
                departments += cure_department

            if 'cure_way' in data_json:
                disease_dict['cure_way'] = data_json['cure_way']

            if  'cure_lasttime' in data_json:
                disease_dict['cure_lasttime'] = data_json['cure_lasttime']

            if 'cured_prob' in data_json:
                disease_dict['cured_prob'] = data_json['cured_prob']

            if 'common_drug' in data_json:
                common_drug = data_json['common_drug']
                for drug in common_drug:
                    rels_commonddrug.append([disease, drug])
                drugs += common_drug

            if 'recommand_drug' in data_json:
                recommand_drug = data_json['recommand_drug']
                drugs += recommand_drug
                for drug in recommand_drug:
                    rels_recommanddrug.append([disease, drug])

            if 'not_eat' in data_json:
                not_eat = data_json['not_eat']
                for _not in not_