芝法酱学习笔记(2.2)——sql性能优化2

发布于:2024-12-21 ⋅ 阅读:(9) ⋅ 点赞:(0)

一、前言

在上一节中,我们使用实验的方式,验证了销售单报表的一些sql性能优化的猜想。但实验结果出乎我们的意料,首先是时间查询使用char和datetime相比,char可能更快,使用bigint(转为秒)和char速度相当。其次是最令人不可理解的是,在连表的时候,直接使用主键id做连表,竟然远远比使用多条件联合索引的连表方式更慢。
小编苦思冥想,认为在千万级数据量下,bigint的筛选效率可能没有联合索引高。那么,如果我们把主键设置为联合主键,在连表时会不会更快呢?那么,就开干吧

二、表设计

2.1 item_new表

我们新建一个item表,表结构和索引如下图所示:
在这里插入图片描述
主键:enp_id,id
不添加任何其他索引

2.2 consign_new表

consign表也类似,我们也用联合主键
在这里插入图片描述
主键:enp_id,header_id,id

三、数据同步导入

为了控制变量,我们不重新生成数据,我们把上次的数据查询出来并相应的插入新表

@Override
    public void syncNewTable() {
        // 查出所有企业
        List<GenEnterpriseEntity> enterpriseEntities = mEnterpriseDbService.list();

        for(GenEnterpriseEntity enterpriseEntity : enterpriseEntities) {

            log.info("开始导入"+enterpriseEntity.getName()+"数据");

            List<GenItemEntity> itemEntityList = mItemDbService.listByEnpId(enterpriseEntity.getId());
            List<GenItemNewEntity> itemNewEntityList = new ArrayList<>();

            for(GenItemEntity itemEntity : itemEntityList) {
                GenItemNewEntity itemNewEntity = new GenItemNewEntity();
                itemNewEntity.createInit();
                itemNewEntity.setEnpId(itemEntity.getId());
                itemNewEntity.setEnpCode(itemEntity.getEnpCode());
                itemNewEntity.setId(itemEntity.getId());
                itemNewEntity.setName(itemEntity.getName());
                itemNewEntity.setCost(itemEntity.getCost());
                itemNewEntity.setTestData(true);
                itemNewEntityList.add(itemNewEntity);
            }

            TransactionTemplate template = new TransactionTemplate(mTransactionManager);
            template.execute(status ->{
                mItemNewDbService.saveBatch(itemNewEntityList);
                return true;
            });
            log.info("导入商品完成");

            final String DAY_BEGIN = "2018-01-01";
            final String DAY_END = "2024-12-31";


            LocalDate startDate = LocalDate.parse(DAY_BEGIN);
            LocalDate endDate = LocalDate.parse(DAY_END);

            while (!startDate.isAfter(endDate)) {

                log.info("导入"+startDate+"的销售单数据");

                LocalDateTime billTimeBeg = startDate.atTime(0, 0, 0);
                LocalDateTime billTimeEnd = startDate.atTime(23, 59, 59);

                long billTimeKeyBeg = CommonUtil.LocalDateTimeToSecond(billTimeBeg);
                long billTimeKeyEnd = CommonUtil.LocalDateTimeToSecond(billTimeEnd);

                List<GenConsignEntity> consignEntityList = mConsignDbService.findAll(enterpriseEntity.getId(),billTimeKeyBeg,billTimeKeyEnd);
                List<GenConsignNewEntity> consignNewEntityList = new ArrayList<>();

                for(GenConsignEntity consignEntity : consignEntityList) {
                    GenConsignNewEntity consignNewEntity = new GenConsignNewEntity();
                    consignNewEntity.createInit();
                    consignNewEntity.setId(consignEntity.getId());
                    consignNewEntity.setEnpId(consignEntity.getEnpId());
                    consignNewEntity.setHeaderId(consignEntity.getHeaderId());
                    consignNewEntity.setBillTimeKey(consignEntity.getBillTimeKey());
                    consignNewEntity.setItemId(consignEntity.getItemId());
                    consignNewEntity.setItemName(consignEntity.getItemName());
                    consignNewEntity.setItemCnt(consignEntity.getItemCnt());
                    consignNewEntity.setPrice(consignEntity.getPrice());
                    consignNewEntity.setDescription(consignEntity.getDescription());
                    consignNewEntity.setTestData(true);
                    consignNewEntityList.add(consignNewEntity);
                }
                consignNewEntityList.sort(Comparator.comparing(GenConsignNewEntity::getHeaderId));

                template = new TransactionTemplate(mTransactionManager);
                template.execute(status -> {
                    mConsignNewDbService.saveBatch(consignNewEntityList);
                    return true;
                });

                log.info(startDate+"的销售单数据导入完成");

                startDate = startDate.plusDays(1l);
            }
        }
    }

四、mapper改写

4.1 枚举

@RequiredArgsConstructor
@EnumDesc
public enum EHeaderJoinMode {

    NONE(0,"不连表","不连表,直接使用consign表做查询",null,null),
    ID_JOIN(1,"id关联","consign_header的id与consign的header_id做关联","id","header_id"),
    BILL_NO_JOIN(2,"订单号关联","header表的enp_id和bill_no与consin相应字段关联","bill_no","bill_no"),
    NEW_CONSIGN(3,"新consign表","enp_id和header_id做连接","id","header_id");


    @EnumValue
    @Getter
    private final int code;
    @Getter
    private final String name;
    @Getter
    private final String desc;
    @Getter
    private final String headerCol;
    @Getter
    private final String consignCol;
}
@RequiredArgsConstructor
@EnumDesc
public enum EItemJoinMode {

    NONE(0,"不连接","不连接item表",null,null),
    ID_JOIN(1,"id连接","使用id链接item","item_id","id"),
    STR_ID_JOIN(2,"字符串id连接","使用字符串id做连接","item_str_id","id"),
    REL_ID_JOIN(3,"关联id连接","不但使用字符串id做连接,item表也不用主键","item_str_id","rel_id"),
    NEW_TABLE(4,"和item_new做连接","和item_new做连接,不但连id,还连enp_id","item_id","id");

    @EnumValue
    @Getter
    private final int code;
    @Getter
    private final String name;
    @Getter
    private final String desc;
    @Getter
    private final String consignCol;
    @Getter
    private final String itemCol;
}

4.2 xml改写

这里不放完整代码了,就改了2处

<choose>
            <when test="IN.headerJoin.name() == 'ID_JOIN'">
                consign_header h JOIN consign c ON h.${IN.headerJoin.headerCol} = c.${IN.headerJoin.consignCol}
            </when>
            <when test="IN.headerJoin.name() == 'BILL_NO_JOIN'">
                consign_header h JOIN consign c ON h.${IN.headerJoin.headerCol} = c.${IN.headerJoin.consignCol} AND h.enp_id = c.enp_id
            </when>
            <!--新增模式-->
            <when test="IN.headerJoin.name() == 'NEW_CONSIGN'">
                consign_header h JOIN consign_new c ON h.${IN.headerJoin.headerCol} = c.${IN.headerJoin.consignCol} AND h.enp_id = c.enp_id
            </when>
            <otherwise>
                consign c
            </otherwise>
        </choose>
        <choose>
            <when test="IN.itemJoin.name() == 'ID_JOIN'">
                JOIN item i ON c.${IN.itemJoin.consignCol} = i.${IN.itemJoin.itemCol}
            </when>
            <when test="IN.itemJoin.name() == 'STR_ID_JOIN'">
                JOIN item i ON c.${IN.itemJoin.consignCol} = i.${IN.itemJoin.itemCol}
            </when>
            <when test="IN.itemJoin.name() == 'REL_ID_JOIN'">
                JOIN item i ON c.${IN.itemJoin.consignCol} = i.${IN.itemJoin.itemCol} AND c.enp_id = i.enp_id
            </when>
            <!--新增模式-->
            <when test="IN.itemJoin.name() == 'NEW_TABLE'">
                JOIN item i ON c.${IN.itemJoin.consignCol} = i.${IN.itemJoin.itemCol} AND c.enp_id = i.enp_id
            </when>
        </choose>

五、实验

请求json

{
  "current": 2,
  "size": 10,
  "enterpriseId": 1869035491194941444,
  "billTimeBeg": "2024-04-01",
  "billTimeEnd": "2024-07-31",
  "headerJoin": "NEW_CONSIGN",
  "itemJoin": "NEW_TABLE",
  "orderBy": "PROFIT",
  "billTimeMode": "BILL_TIME_KEY"
}

生成sql:

explain SELECT c.item_id,c.item_name,
SUM(c.item_cnt) AS total_cnt, 
SUM(c.price * c.item_cnt) AS total_amount, 
SUM((c.price - i.cost) * c.item_cnt) AS total_profit 
FROM consign_header h JOIN consign_new c ON h.id = c.header_id AND h.enp_id = c.enp_id 
JOIN item i ON c.item_id = i.id AND c.enp_id = i.enp_id 
WHERE h.enp_id = 1869035491194941444 
AND h.bill_time_key BETWEEN 1711900800 AND 1722441599 
GROUP BY item_id 
ORDER BY total_profit LIMIT 10,10

explain结果

select_type table type key ken_ken rows filtered
simple h rang idx_time_key 16 11516 100
simple c ref PRIMARY 16 43 100
simple i ref PRIMARY 8 1 100

执行时间

enp_id enp_code cnt time
1869035491194941442 enp_001 248814 2.638s
1869035491194941443 enp_002 263780 2.285s
1869035491194941444 enp_003 120522 1.157s
1869035491194941445 enp_004 84262 1.003s
1869035491194941446 enp_005 174673 4.157s
1869035491194941447 enp_006 342751 4.105s
1869035491194941448 enp_007 52964 0.48s
1869035491194941449 enp_008 172159 3.895s
1869035491194941450 enp_009 181632 4.688s
1869035491194941451 enp_010 188382 5.168s

先前使用id主键连表的执行时间

enp_id enp_code cnt time
1869035491194941442 enp_001 248814 19.311s
1869035491194941443 enp_002 263780 18.534s
1869035491194941444 enp_003 120522 13.849s
1869035491194941445 enp_004 84262 5.782s
1869035491194941446 enp_005 174673 21.158s
1869035491194941447 enp_006 342751 20.927s
1869035491194941448 enp_007 52964 3.087s
1869035491194941449 enp_008 172159 19.982s
1869035491194941450 enp_009 181632 23.256s
1869035491194941451 enp_010 188382 26.057s

结论:
效率比先前,提升了6~8倍!!!

六、经验总结

在设计表的时候,如果有明确的父子表层级关系(1对多),并且数据量很大,子表的主键直接设计成联合主键。
比如本案例中的,enterprise -> item,consign_header; consign_header->consign

七、一些其他筛选参数

上节我们还有一些其他筛选参数的情况没有测试,诸如门店id,业务员id等
群友们可以自行测试,我这里就不耗费篇幅了。
结论就是按照预期走了索引。

八、order by问题

上期由于篇幅原因,还有一个问题没有实验,就是order by id使得主键索引覆盖了正常的索引。
小编懒得写代码做实验了,我们直接写sql吧:

ORDER BY id DESC:

SELECT * FROM consign_header h
WHERE h.enp_id = 1869035491194941447
AND h.bill_time_key BETWEEN 1711900800 AND 1722441599 
ORDER BY id DESC LIMIT 100;

在workbench的执行时间:0.047S
在这里插入图片描述

ORDER BY bill_time_key DESC:

explain SELECT * FROM consign_header h
WHERE h.enp_id = 1869035491194941447
AND h.bill_time_key BETWEEN 1711900800 AND 1722441599 
ORDER BY h.bill_time_key DESC LIMIT 100;

在workbench的执行时间:0.015S,并且第二次执行会因缓存变为0秒
在这里插入图片描述
我们可以看到,order by id 会使得查找条件不走索引,而走了主键,并且速度显著降低。