RELU
import torch from torch import nn from torch.nn import ReLU input=torch.tensor([[1,-0.5], [-1,3]]) output=torch.reshape(input,(-1,1,2,2)) print(output.shape)
(-1,1,2,2)表示第一个维度将由系统自动推断,第二个维度为1,而第三和第四个维度为2。
import torch from torch import nn from torch.nn import ReLU input=torch.tensor([[1,-0.5], [-1,3]]) output=torch.reshape(input,(-1,1,2,2)) print(output.shape) class my_nn(nn.Module): def __init__(self) -> None: super().__init__() self.relu1=ReLU() def forward(self,input): output=self.relu1(input) return output my_nn01=my_nn() output=my_nn01(input) print(output)
Sigmoid
import torch import torchvision from torch import nn from torch.nn import ReLU, Sigmoid from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter input=torch.tensor([[1,-0.5], [-1,3]]) output=torch.reshape(input,(-1,1,2,2)) print(output.shape) dataset=torchvision.datasets.CIFAR10("./dataset",train=False,download=True, transform=torchvision.transforms.ToTensor()) dataloader=DataLoader(dataset,batch_size=64) class my_nn(nn.Module): def __init__(self) -> None: super().__init__() self.relu1=ReLU() self.sigmoid1=Sigmoid() def forward(self,input): # output=self.relu1(input) output=self.sigmoid1(input) return output my_nn01=my_nn() writer=SummaryWriter("./logs_relu") step=0 for data in dataloader: imgs,targets=data writer.add_images("input",imgs,global_step=step) output = my_nn01(imgs) writer.add_images("output",output,step) step+=1 writer.close()
终端运行
tensorboard --logdir=”logs_relu“
参考
【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=20&share_source=copy_web&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a