代码随想录day11

发布于:2025-02-12 ⋅ 阅读:(145) ⋅ 点赞:(0)

150.逆波兰表达式求值

//需理解该计算方法和字符串消除类似,只是变成了两数的运算

    int evalRPN(vector<string>& tokens) {
        stack<long long> stack_eval;
        for(int i = 0; i < tokens.size(); i++){
            if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
                long long num_1 = stack_eval.top();
                stack_eval.pop();
                long long num_2 = stack_eval.top();
                stack_eval.pop();
                if(tokens[i] == "+") stack_eval.push(num_2 + num_1);
                if(tokens[i] == "-") stack_eval.push(num_2 - num_1);
                if(tokens[i] == "*") stack_eval.push(num_2 * num_1);
                if(tokens[i] == "/") stack_eval.push(num_2 / num_1);
            }else{
                stack_eval.push(stoll(tokens[i]));
            }
        }
        long long result = stack_eval.top();
        return result;
    }

239.滑动窗口最大值,需二刷

//第一想法是判断k中最大值然后输出,时间复杂度为O(n*k),报超时

    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> result;
        for(int i = nums.size()-1; i >= k - 1; i--){
            int max = nums[i];
            for(int j = k-1 ; j > 0; j--){
                if(nums[i-j] > max){
                    max = nums[i-j];
                }
            }
            result.push_back(max);
        }
        reverse(result.begin(), result.end());
        return result;
    }

//解法二需了解单调队列的概念以及用哪种数据结构实现

    class MyDeque{
    public:
        deque<int> _deque;
        
        void pop(int value){
            if(value == _deque.front()){
                _deque.pop_front();
            }
        }
        void push(int value){
            while(!_deque.empty() && value > _deque.back()){
                _deque.pop_back();
            }
            _deque.push_back(value);
        }
        int front(){
            return _deque.front();
        }
    };
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> result;
        MyDeque my_deque;
        for(int i = 0; i < k; i++){
            my_deque.push(nums[i]);
        }
        result.push_back(my_deque.front());
        for(int j = k; j < nums.size(); j++){
            my_deque.pop(nums[j-k]);
            my_deque.push(nums[j]);
            result.push_back(my_deque.front());
        }
        return result;
        
    }

347.前K个高频元素,需二刷

//理解优先级队列中大顶堆,小顶堆的概念及用法

    struct Compare{
        bool operator()(pair<int, int>lhs, pair<int, int>rhs){
            //小顶堆是大于,大顶堆是小于
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        vector<int> result(k);
        unordered_map<int, int> _map;
        for(int i = 0; i < nums.size(); i++){
            _map[nums[i]]++;
        }
        std::priority_queue<pair<int, int>, std::vector<pair<int, int>>, Compare> _priority;
        for(unordered_map<int, int>::iterator it = _map.begin(); it != _map.end(); it++){
            _priority.push(*it);
            //保持k个元素在小顶堆中,删除小的堆顶留下的就是较大的K个
            if(_priority.size() > k){
                _priority.pop();
            }
        }
        for(int j = k-1; j >= 0; j--){
            //倒叙输出,最大的在堆最后
            result[j] = _priority.top().first;
            _priority.pop();
        }
        return result;
    }


网站公告

今日签到

点亮在社区的每一天
去签到