【STM32】通过L496的HAL库Flash建立FatFS文件系统(CubeMX自动配置R0.12C版本)

发布于:2025-02-13 ⋅ 阅读:(10) ⋅ 点赞:(0)

【STM32】通过L496的HAL库Flash建立FatFS文件系统(CubeMX自动配置R0.12C版本)

Flash

无论是何种Flash 都能进行读写操作
读一般可以随机地址读取 但写操作只能按某一个最小单位进行擦除后 才能写入
【STM32】HAL库Flash读写操作及配置(L4和F4系列不同操作、HAL_FLASH_ERROR_PGA报错的解决方案)
为了能够用自带的Flash进行文件系统的建立 首先空间不能太小
其次 为了方便编程 可以选择多页面、小空间的Flash进行操作
若采用F407 每次写入擦除的最小单位是一个扇区(128K) 编程起来比较麻烦
所以本文采用L496来进行操作

这里我们就用496的第二个BANK来作为硬盘操作(地址0x0808 0000 之后的数据 总共256页 每页2K大小 总大小512K)
在这里插入图片描述

操作L496的话 是双字64位操作
在这里插入图片描述
在双Bank模式下 每次擦除时还需要选择擦除的Bank序号(1或2 或两者都擦除)

/** @defgroup FLASH_Banks FLASH Banks
  * @{
  */
#define FLASH_BANK_1              ((uint32_t)0x01)                          /*!< Bank 1   */
#if defined (STM32L471xx) || defined (STM32L475xx) || defined (STM32L476xx) || defined (STM32L485xx) || defined (STM32L486xx) || \
    defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) || defined (STM32L4R5xx) || \
    defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define FLASH_BANK_2              ((uint32_t)0x02)                          /*!< Bank 2   */
#define FLASH_BANK_BOTH           ((uint32_t)(FLASH_BANK_1 | FLASH_BANK_2)) /*!< Bank1 and Bank2  */
#else
#define FLASH_BANK_BOTH           ((uint32_t)(FLASH_BANK_1))                /*!< Bank 1   */
#endif

HAL库测试代码如下:

void Test_Flash(uint32_t add)
{
	uint32_t error = 0;
	uint64_t dat = 0x0123456776543210;//要写入的数据,必须得是双字64bit
	uint64_t read_dat = 0 ;
	FLASH_EraseInitTypeDef flash_dat;          //定义一个结构体变量,里面有擦除操作需要定义的变量
	
	HAL_FLASH_Unlock();                                    //第二步:解锁                        
	flash_dat.TypeErase = FLASH_TYPEERASE_PAGES;         //擦除类型是“Page Erase” 仅删除页面 另外一个参数是全部删除
	flash_dat.Page = (uint32_t)((add-0x08000000)/2048);            //擦除地址对应的页
	flash_dat.NbPages = 1;                               //一次性擦除1页,可以是任意页
	if(flash_dat.Page>255)
	{
		flash_dat.Banks=2;
	}
	else
	{
		flash_dat.Banks=1;
	}
	HAL_FLASHEx_Erase(&flash_dat,&error);            //第三步:参数写好后调用擦除函数
	FLASH_WaitForLastOperation(0xFFFF); 
	HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, add, dat);//第四步:写入数据
	HAL_FLASH_Lock();                                      //第五步:上锁
	
	read_dat = *(__I uint64_t *)add;	   //读出flash中的数据
	uint32_t read_dat1=read_dat>>32;
	uint32_t read_dat2=read_dat&0x00000000FFFFFFFF;
	printf("[INFO] Flash_Test:0x%08x 0x%08x\n",read_dat1,read_dat2);
}

步骤就是:
解锁;
擦除;
写数据;
上锁。

若要在写入某个地址下的一部分数据时 需要擦除整个页面 然后再进行写入
所以如果要保留该页面下的其他数据 就应该在写入之前读取该页面数据 然后将某一部分修改的数据替换掉
之后再按页面整个写入
好在文件系统中 只要配置得当 可以帮我们实现按页擦除、写入的功能
这样我们就只需要定义好地址写、地址读函数即可

这里需要注意 由于L496的Flash是按64位对其 而我们的MCU是32位 所以不建议直接进行64位移位操作
最好是用两个32位变量 来拼接成一个64位
并且需要注意的是 32位变量左移位时 不得操作32位 最好是先赋值给64位变量 再单独对64位变量进行操作
同理 在读取函数中 64位变量也建议拆分成两个32位变量进行读取操作

Flash地址写

//读取SPI FLASH  
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToWrite:要读取的字节数(最大65535)
void Write_Flash(const uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{
	if(Flag_Flash_Busy==1)return;
	Flag_Flash_Busy=1;
	uint32_t Current_ADD = ReadAddr;	
	uint32_t add =0;
	uint32_t page=(uint32_t)((Current_ADD-0x08000000)/2048);
	uint32_t first_add = Current_ADD;	
	uint32_t judg_add = (page)*0x800+0x08000000+Flash_Page_Size;
	uint32_t error = 0;
	uint64_t dat = 0;														//要写入的数据,必须得是双字64bit
	uint32_t dat_0=0;
	uint32_t dat_1=0;
	uint16_t i =0;
	uint16_t j = NumByteToRead/8;
	FLASH_EraseInitTypeDef flash_dat;          //定义一个结构体变量,里面有擦除操作需要定义的变量
	
	HAL_FLASH_Unlock();                                    //第二步:解锁                        
	flash_dat.TypeErase = FLASH_TYPEERASE_PAGES;         //擦除类型是“Page Erase” 仅删除页面 另外一个参数是全部删除
	flash_dat.Page = (uint32_t)((Current_ADD-0x08000000)/2048);            //擦除地址对应的页
	flash_dat.NbPages = 1;                               //一次性擦除1页,可以是任意页
	if(flash_dat.Page>255)
	{
		flash_dat.Banks=2;
	}
	else
	{
		flash_dat.Banks=1;
	}
	HAL_FLASHEx_Erase(&flash_dat,&error);            //第三步:参数写好后调用擦除函数
	FLASH_WaitForLastOperation(0xFFFF); 

	for(i=0;i<j;i++)
	{
		add = Current_ADD+i*8;
		if(add>=judg_add)
		{
			HAL_FLASH_Lock();     //第五步:上锁
			Flag_Flash_Busy=0;
			Write_Flash(pBuffer+i*8,add-first_add,NumByteToRead-i*8);
			return;
		}
		dat_0 = pBuffer[i*8+0]|(pBuffer[i*8+1]<<8)|(pBuffer[i*8+2]<<16)|(pBuffer[i*8+3]<<24);		
		dat_1 = pBuffer[i*8+4]|(pBuffer[i*8+5]<<8)|(pBuffer[i*8+6]<<16)|(pBuffer[i*8+7]<<24);
		dat = dat_1;
		dat = (dat<<32)|dat_0;
		HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, add, dat);  //第四步:写入数据
	}
	
	HAL_FLASH_Lock();     //第五步:上锁
	Flag_Flash_Busy=0;
}

Flash地址读

//读取SPI FLASH  
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void Read_Flash(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{
	if(Flag_Flash_Busy==1)return;
	Flag_Flash_Busy=1;
	uint32_t Current_ADD = ReadAddr;	
	uint32_t add =0;
	uint64_t dat = 0;														//要写入的数据,必须得是双字64bit
	uint32_t dat_0=0;
	uint32_t dat_1=0;
	uint16_t i =0;
	uint16_t j = NumByteToRead/8;
	
	for(i=0;i<j;i++)
	{
		add = Current_ADD+i*8;
		dat = *(__I uint64_t *)(add);
		dat_1=dat>>32;
		dat_0=dat&0x00000000FFFFFFFF;
		pBuffer[i*8+0]=(uint8_t)(dat_0&0xFF);
		pBuffer[i*8+1]=(uint8_t)((dat_0>>8)&0xFF);
		pBuffer[i*8+2]=(uint8_t)((dat_0>>16)&0xFF);
		pBuffer[i*8+3]=(uint8_t)((dat_0>>24)&0xFF);
		pBuffer[i*8+4]=(uint8_t)(dat_1&0xFF);
		pBuffer[i*8+5]=(uint8_t)((dat_1>>8)&0xFF);
		pBuffer[i*8+6]=(uint8_t)((dat_1>>16)&0xFF);
		pBuffer[i*8+7]=(uint8_t)((dat_1>>24)&0xFF);
	}
	Flag_Flash_Busy=0;
}

FatFS文件系统配置

FatFS文件系统依赖底层Flash驱动来进行文件系统配置
通过实现f_open等函数操作来进行文件的操作
这里就不讲解底层原理了 相关资料很多
可以通过CubeMX进行配置
如图:
在这里插入图片描述
修改以支持中文字符
修改MAX_SS为2048(496的一个页面是2K)
这里MAX_SS只能选择512 1024 2048 4096 其对应的就是格式化中的“分配单元大小”
也就是规定其最小操作单元为2048

另外 配置好RTC(可用可不用)
在这里插入图片描述

FatFS移植

CubeMX生成代码后 需要在工程中进行配置
导入用户文件:
在这里插入图片描述
导入外设中的FatFS库文件
在这里插入图片描述
添加头文件目录:
在这里插入图片描述

驱动函数

修改user_diskio.c中的函数:

/**
  * @brief  Initializes a Drive
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_initialize (
	BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{
  /* USER CODE BEGIN INIT */
    Stat = STA_NOINIT;
		//获取驱动器状态
		Stat = USER_status(pdrv);  
    return Stat;
  /* USER CODE END INIT */
}

/**
  * @brief  Gets Disk Status
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_status (
	BYTE pdrv       /* Physical drive number to identify the drive */
)
{
  /* USER CODE BEGIN STATUS */
		Stat = STA_NOINIT;		  //驱动器未初始化,Stat=0x01
		Stat = 0 ;  //Stat=0x00
    return Stat;
  /* USER CODE END STATUS */
}

/**
  * @brief  Reads Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data buffer to store read data
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to read (1..128)
  * @retval DRESULT: Operation result
  */
DRESULT USER_read (
	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
	BYTE *buff,     /* Data buffer to store read data */
	DWORD sector,   /* Sector address in LBA */
	UINT count      /* Number of sectors to read */
)
{
  /* USER CODE BEGIN READ */
	uint32_t globalAddr = (sector)*0x800+0x08080000;  
	uint16_t byteCount = count << 11;   
	//读取数据
	Read_Flash((uint8_t *)buff,globalAddr, byteCount);
    return RES_OK;
  /* USER CODE END READ */
}

/**
  * @brief  Writes Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data to be written
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to write (1..128)
  * @retval DRESULT: Operation result
  */
#if _USE_WRITE == 1
DRESULT USER_write (
	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
	const BYTE *buff,   /* Data to be written */
	DWORD sector,       /* Sector address in LBA */
	UINT count          /* Number of sectors to write */
)
{
  /* USER CODE BEGIN WRITE */
  /* USER CODE HERE */
	uint32_t globalAddr = (sector)*0x800+0x08080000;  
	uint16_t byteCount = count << 11;   

	Write_Flash((uint8_t *)buff,globalAddr, byteCount);
    return RES_OK;
  /* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 */

/**
  * @brief  I/O control operation
  * @param  pdrv: Physical drive number (0..)
  * @param  cmd: Control code
  * @param  *buff: Buffer to send/receive control data
  * @retval DRESULT: Operation result
  */
#if _USE_IOCTL == 1
DRESULT USER_ioctl (
	BYTE pdrv,      /* Physical drive nmuber (0..) */
	BYTE cmd,       /* Control code */
	void *buff      /* Buffer to send/receive control data */
)
{
  /* USER CODE BEGIN IOCTL */
		DRESULT res = RES_OK;
	
	switch(cmd)
	{
		/*以下四个命令都是按照FatFs默认参数配置时必须需要的*/
		//完成挂起的写入过程(在_FS_READONLY == 0时需要)
		case CTRL_SYNC:               //确保设备已完成挂起的写入过程。如果磁盘I/O层或存储设备具有回写式缓存,则脏缓存数据必须立即提交到介质。如果对介质的每个写操作都在以下时间内完成,则此命令不执行任何操作 disk_write 功能。
				return RES_OK;
			case GET_SECTOR_COUNT:{
				*(DWORD *)buff = 256;     //表示扇区的个数
				return RES_OK;
			}		
			case GET_SECTOR_SIZE:{
				*(WORD *)buff = 2048;  //表示每个扇区的大小
				return RES_OK;
			}	
				case GET_BLOCK_SIZE:{
				*(WORD *)buff = 1;  //表示同时可擦除的扇区个数
				return RES_OK;
			}	
		default:
			res = RES_ERROR;
	}

    return res;
  /* USER CODE END IOCTL */
}

这里的读写函数需要加上地址偏移
每次操作2048个字节
扇区个数为256 对应Flash的256页
扇区大小即位页大小 2048字节
每次同时擦除1个扇区也就是1页

加入使用多页擦除的话 譬如2页擦除 则中间需要缓存的数据就为2048*2 这会大大占用系统资源 但能有效提高读写速度 不过在嵌入式系统中不建议这样做
另外配置堆栈大小 越大越好
在这里插入图片描述

时间戳函数

在文件fatfs.c中修改时间戳函数

/**
  * @brief  Gets Time from RTC
  * @param  None
  * @retval Time in DWORD
  */
DWORD get_fattime(void)
{
  /* USER CODE BEGIN get_fattime */
	RTC_TimeTypeDef sTime;
	RTC_DateTypeDef sDate;
	//获取RTC时间
	if(HAL_RTC_GetTime(&hrtc, &sTime, RTC_FORMAT_BIN) == HAL_OK)
	{
		//获取RTC日期
		HAL_RTC_GetDate(&hrtc, &sDate, RTC_FORMAT_BIN);
		
		WORD date=(2000+sDate.Year-1980)<<9;
		date = date |(sDate.Month<<5) |sDate.Date;

		WORD time=sTime.Hours<<11;
		time = time | (sTime.Minutes<<5) | (sTime.Seconds>1);
		DWORD dt=(date<<16) | time;
		
		return	dt;
	}
	else
		return 0;
  /* USER CODE END get_fattime */
}

文件操作函数

建立一个文件 加上文件操作等函数
头文件声明:

#ifndef FILE_OPERATE_H
#define FILE_OPERATE_H

#include "main.h"
#include "FatFs.h"
#include "stdio.h"



/*函数声明*/
void FatFS_Init(void);

void FatFs_GetDiskInfo(void);
void FatFs_ScanDir(const TCHAR* PathName);
void FatFs_ReadTXTFile(TCHAR *filename);
void FatFs_WriteTXTFile(TCHAR *filename,uint16_t year, uint8_t month, uint8_t day);
void FatFs_GetFileInfo(TCHAR *filename);
void FatFs_DeleteFile(TCHAR *filename);
void FatFs_PrintfFileDate(WORD date, WORD time);

#endif

工作区缓存

//定义用于格式化的工作区缓存
BYTE work[_MAX_SS];

由于一次只操作一个扇区 所以缓存大小即为2048

文件挂载和格式化测试

	retUSER = f_mount(&USERFatFS,USERPath,1);//挂载盘符A
	if(retUSER == FR_NO_FILESYSTEM)//没有文件系统就格式化创建创建文件系统
	{
			retUSER = f_mkfs(USERPath,FM_FAT,2048,work,sizeof(work));
			if(retUSER == FR_OK)
			{
					retUSER = f_mount(&USERFatFS,USERPath,1);//挂载
					printf("[FatFS] 格式化成功retUSER=%d\r\n",retUSER);
			}
			else
			{
				printf("[FatFS] 格式化失败retUSER=%d\r\n",retUSER);
				return;
			}//格式化失败
	}
	else if(retUSER == FR_OK)
	{
		printf("[FatFS] 挂载成功retUSER=%d\r\n",retUSER);
	}
	else
	{
		printf("[FatFS] 挂载失败retUSER=%d\r\n",retUSER);
		return;
	}//挂载失败

第一次时首先挂载 若未成功则重新格式化再挂载

需要注意的是 格式化后 Flash内容尽量不要发生改变
若不慎改变 则很可能在挂载时会卡死 建议执行重新格式化
最好的方法就是把首个文件系统扇区进行擦除 然后让函数重新执行格式化

在格式化中 f_mkfs函数的传参除了路径、文件系统类型外 其工作区和工作区大小 以及分配单元大小都要与2048对齐

文件读写测试

若挂载成功 则可以进行文件读写测试

void SDFileTestWrite(void)
{
    FRESULT res_sd;
    UINT fnum;/* 文件成功读写数量 */
    char string[100];
    signed int ByteNum = 0;

    memset(string,0,sizeof(string));
    sprintf(string,"%s%s.xls",USERPath,"Test");
    res_sd = f_open(&USERFile, string,FA_CREATE_ALWAYS | FA_WRITE );
    if(res_sd != FR_OK){printf("[FILE] Failed to create file! %d\r\n",res_sd);}
    sprintf(string,"Vreal\tA1\tA2\n");
    ByteNum = strlen(string);
    res_sd=f_write(&USERFile,string,ByteNum,&fnum);
    res_sd = f_close(&USERFile);
    if(res_sd != FR_OK){printf("[FILE] Error:File closure Exception!\r\n");}
    else{printf("[FILE] SDFileTestWrite ok!\r\n");}
}

void SDFileTestRead(void)
{
    FRESULT res_sd;
    char string[100];
    uint32_t line = 0;

    memset(string,0,sizeof(string));
    sprintf(string,"%s%s.xls",USERPath,"Test");
    res_sd = f_open(&USERFile, string, FA_OPEN_EXISTING | FA_READ);
    if(res_sd != FR_OK){goto LoadFail;}
    line = 0;

    while(!(f_eof(&USERFile)))
    {
        memset(string,0,sizeof(string));
        f_gets(string,sizeof(string),&USERFile);
        if(strlen(string) == 0){break;}
        ++line;
        printf("[FILE] line:%d %s\r\n",line,string);
        //sscanf(string,"%f\t%f\t%f\n",&Vreal[*pNum],&Va1[*pNum],&Va2[*pNum]);//按格式提取字符串函数
    }
    res_sd = f_close(&USERFile);
    if(res_sd != FR_OK){printf("[FILE] Error:Load File closure Exception!\r\n");}
    printf("[FILE] SDFileTestRead ok\r\n");
    return;
    LoadFail:
    {
      printf("[FILE] Load Fail:%s\r\n",string);
    }
}

此函数实现了创建一个xls文件 并读取

其他文件操作函数

包括但不限于 查看目录所有文件、添加/删除文件、文件信息浏览等等
其实就是C语言文件操作那一些函数罢了 对应在Linux中就是ls、mkdir、touch等等 具体的模拟CLI实现可以用串口来进行
完整代码:

#include "file_operate.h"
#include <string.h>

//定义用于格式化的工作区缓存
BYTE work[_MAX_SS];

void SDFileTestWrite(void)
{
    FRESULT res_sd;
    UINT fnum;/* 文件成功读写数量 */
    char string[100];
    signed int ByteNum = 0;

    memset(string,0,sizeof(string));
    sprintf(string,"%s%s.xls",USERPath,"Test");
    res_sd = f_open(&USERFile, string,FA_CREATE_ALWAYS | FA_WRITE );
    if(res_sd != FR_OK){printf("[FILE] Failed to create file! %d\r\n",res_sd);}
    sprintf(string,"Vreal\tA1\tA2\n");
    ByteNum = strlen(string);
    res_sd=f_write(&USERFile,string,ByteNum,&fnum);
    res_sd = f_close(&USERFile);
    if(res_sd != FR_OK){printf("[FILE] Error:File closure Exception!\r\n");}
    else{printf("[FILE] SDFileTestWrite ok!\r\n");}
}

void SDFileTestRead(void)
{
    FRESULT res_sd;
    char string[100];
    uint32_t line = 0;

    memset(string,0,sizeof(string));
    sprintf(string,"%s%s.xls",USERPath,"Test");
    res_sd = f_open(&USERFile, string, FA_OPEN_EXISTING | FA_READ);
    if(res_sd != FR_OK){goto LoadFail;}
    line = 0;

    while(!(f_eof(&USERFile)))
    {
        memset(string,0,sizeof(string));
        f_gets(string,sizeof(string),&USERFile);
        if(strlen(string) == 0){break;}
        ++line;
        printf("[FILE] line:%d %s\r\n",line,string);
        //sscanf(string,"%f\t%f\t%f\n",&Vreal[*pNum],&Va1[*pNum],&Va2[*pNum]);//按格式提取字符串函数
    }
    res_sd = f_close(&USERFile);
    if(res_sd != FR_OK){printf("[FILE] Error:Load File closure Exception!\r\n");}
    printf("[FILE] SDFileTestRead ok\r\n");
    return;
    LoadFail:
    {
      printf("[FILE] Load Fail:%s\r\n",string);
    }
}
/*挂载FatFs文件系统*/
void FatFS_Init(void)
{	
	retUSER = f_mount(&USERFatFS,USERPath,1);//挂载盘符A
	if(retUSER == FR_NO_FILESYSTEM)//没有文件系统就格式化创建创建文件系统
	{
			retUSER = f_mkfs(USERPath,FM_FAT,2048,work,sizeof(work));
			if(retUSER == FR_OK)
			{
					retUSER = f_mount(&USERFatFS,USERPath,1);//挂载
					printf("[FatFS] 格式化成功retUSER=%d\r\n",retUSER);
			}
			else
			{
				printf("[FatFS] 格式化失败retUSER=%d\r\n",retUSER);
				return;
			}//格式化失败
	}
	else if(retUSER == FR_OK)
	{
		printf("[FatFS] 挂载成功retUSER=%d\r\n",retUSER);
	}
	else
	{
		printf("[FatFS] 挂载失败retUSER=%d\r\n",retUSER);
		return;
	}//挂载失败
	
	SDFileTestWrite();
	SDFileTestRead();
	
	FatFs_GetDiskInfo();
	FatFs_ScanDir(USERPath);
}

/*获取磁盘信息并在LCD上显示*/
void FatFs_GetDiskInfo(void)
{
    FATFS *fs;
	//定义剩余簇个数变量
    DWORD fre_clust; 
	//获取剩余簇个数
    FRESULT res = f_getfree("0:", &fre_clust, &fs); 
	//获取失败
    if(res != FR_OK)
    {
        printf("f_getfree() error\r\n");
        return;
    }
    printf("\r\n*** FAT disk info ***\r\n");
		
	//总的扇区个数
    DWORD tot_sect = (fs->n_fatent - 2) * fs->csize;  
		
	//剩余的扇区个数 = 剩余簇个数 * 每个簇的扇区个数
    DWORD fre_sect = fre_clust * fs->csize;    
		
	//对于SD卡和U盘, _MIN_SS=512字节
#if  _MAX_SS == _MIN_SS  
    //SD卡的_MIN_SS固定为512,右移11位相当于除以2048
	//剩余空间大小,单位:MB,用于SD卡,U盘
    DWORD freespace= (fre_sect>>11); 
		//总空间大小,单位:MB,用于SD卡,U盘		
    DWORD totalSpace= (tot_sect>>11);  
#else
	//Flash存储器,小容量
	//剩余空间大小,单位:KB
    DWORD freespace= (fre_sect*fs->ssize)>>10;   
	//总空间大小,单位:KB
    DWORD totalSpace= (tot_sect*fs->ssize)>>10;  
#endif

	//FAT类型
    printf("FAT type = %d\r\n",fs->fs_type);
    printf("[1=FAT12,2=FAT16,3=FAT32,4=exFAT]\r\n");
		
	//扇区大小,单位字节
    printf("Sector size(bytes) = ");
	//SD卡固定512字节
#if  _MAX_SS == _MIN_SS 
    printf("%d\r\n", _MIN_SS);
#else
	//FLASH存储器
    printf("%d\r\n", fs->ssize);
#endif
		
    printf("Cluster size(sectors) = %d\r\n", fs->csize);
    printf("Total cluster count = %ld\r\n", fs->n_fatent-2);
    printf("Total sector count = %ld\r\n", tot_sect);
		
	//总空间
#if  _MAX_SS == _MIN_SS 
    printf("Total space(MB) = %ld\r\n", totalSpace);
#else
    printf("Total space(KB) = %ld\r\n", totalSpace);
#endif
		
	//空闲簇数量
    printf("Free cluster count = %ld\r\n",fre_clust);
	//空闲扇区数量
    printf("Free sector count = %ld\r\n", fre_sect);
		
	//空闲空间
#if  _MAX_SS == _MIN_SS 
    printf("Free space(MB) = %ld\r\n", freespace);
#else
    printf("Free space(KB) = %ld\r\n", freespace);
#endif

    printf("Get FAT disk info OK\r\n");
}

/*创建文本文件*/
void FatFs_WriteTXTFile(TCHAR *filename,uint16_t year, uint8_t month, uint8_t day)
{
	FIL	file;
	printf("\r\n*** Creating TXT file: %s ***\r\n", filename);
	
	FRESULT res = f_open(&file, filename, FA_CREATE_ALWAYS | FA_WRITE);
	//打开/创建文件成功
	if(res == FR_OK)
	{
		//字符串必须有换行符"\n"
		TCHAR str[]="Line1: Hello, FatFs***\n";  
		//不会写入结束符"\0"
		f_puts(str, &file); 
		
		printf("Write file OK: %s\r\n", filename);
	}
	else
	{
		printf("Open file error,error code: %d\r\n", res);
	}
	//使用完毕关闭文件
	f_close(&file);
}

/*读取一个文本文件的内容*/
void FatFs_ReadTXTFile(TCHAR *filename)
{
	printf("\r\n*** Reading TXT file: %s ***\r\n", filename);

	FIL	file;
	//以只读方式打开文件
	FRESULT res = f_open(&file, filename, FA_READ);  
	//打开成功
	if(res == FR_OK)
	{
		//读取缓存
		TCHAR str[100];
		//没有读到文件内容末尾
		while(!f_eof(&file))
		{
			//读取1个字符串,自动加上结束符”\0”
			f_gets(str,100, &file);	
			printf("%s", str);
		}
		printf("\r\n");
	}
	//如果没有该文件
	else if(res == FR_NO_FILE)
		printf("File does not exist\r\n");
	//打开失败
	else
		printf("f_open() error,error code: %d\r\n", res);
	//关闭文件
	f_close(&file);
}

/*扫描和显示指定目录下的文件和目录*/
void FatFs_ScanDir(const TCHAR* PathName)
{
	DIR dir;					//目录对象
	FILINFO fno;				//文件信息
	//打开目录
	FRESULT res = f_opendir(&dir, PathName);
	//打开失败
	if(res != FR_OK)
	{
		//关闭目录,直接退出函数
		f_closedir(&dir);
		printf("\r\nf_opendir() error,error code: %d\r\n", res);
		return;
	}
	
	printf("\r\n*** All entries in dir: %s ***\r\n", PathName);
	//顺序读取目录中的文件
	while(1)
	{
		//读取目录下的一个项
		res = f_readdir(&dir, &fno);    
		//文件名为空表示没有多的项可读了
		if(res != FR_OK || fno.fname[0] == 0)
			break;  
		//如果是一个目录
		if(fno.fattrib & AM_DIR)  		
		{
			printf("DIR: %s\r\n", fno.fname);
		}
		//如果是一个文件
		else  		
		{
			printf("FILE: %s\r\n",fno.fname);
		}
	}
	//扫描完毕,关闭目录
	printf("Scan dir OK\r\n");
	f_closedir(&dir);
}

/*获取一个文件的文件信息*/
void FatFs_GetFileInfo(TCHAR *filename)
{
	printf("\r\n*** File info of: %s ***\r\n", filename);

	FILINFO fno;
	//检查文件或子目录是否存在
	FRESULT fr = f_stat(filename, &fno);
	//如果存在从fno中读取文件信息
	if(fr == FR_OK)
	{
		printf("File size(bytes) = %ld\r\n", fno.fsize);
		printf("File attribute = 0x%x\r\n", fno.fattrib);
		printf("File Name = %s\r\n", fno.fname);
		//输出创建/修改文件时的时间戳
		FatFs_PrintfFileDate(fno.fdate, fno.ftime);
	}
	//如果没有该文件
	else if (fr == FR_NO_FILE)
		printf("File does not exist\r\n");
	//发生其他错误
	else
		printf("f_stat() error,error code: %d\r\n", fr);
}

/*删除文件*/
void FatFs_DeleteFile(TCHAR *filename)
{
	printf("\r\n*** Delete File: %s ***\r\n", filename);
	FIL	file;
	//打开文件
	FRESULT res = f_open(&file, filename, FA_OPEN_EXISTING);  
	if(res == FR_OK)
	{
		//关闭文件
		f_close(&file);
		printf("open successfully!\r\n");
	}
	//删除文件
	res = f_unlink(filename);
	//删除成功
	if(res == FR_OK)
	{
		printf("The file was deleted successfully!\r\n");
	}
	//删除失败
	else
	{
		printf("File deletion failed, error code:%d\r\n", res);
	}
}

/*打印输出文件日期*/
void FatFs_PrintfFileDate(WORD date, WORD time)
{
	printf("File data = %d/%d/%d\r\n", ((date>>9)&0x7F)+1980, (date>>5)&0xF, date&0x1F);
	printf("File time = %d:%d:%d\r\n", (time>>11)&0x1F, (time>>5)&0x3F, time&0x1F);
}

测试

在格式化前 数据都是FF
在这里插入图片描述
在挂载测试时 会读取整个硬盘数据 发现没数据 就会报挂载不成功 然后开始格式化

格式化时 写入的第一个地址内容如下:
在这里插入图片描述
格式化完成后:
在这里插入图片描述
在这里插入图片描述
这些都是底层操作 我们不用考虑 只要文件系统没BUG 就肯定能跑
格式化成功测试:
在这里插入图片描述
在测试之前 我跑了一下Flash Test 其会将0x0808 0000的整个页面清空
所以 每次复位都会重新格式化
去掉Flash Test后则能直接挂载:
在这里插入图片描述
硬盘信息:
在这里插入图片描述
目录下所有文件信息:
在这里插入图片描述

附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作

SysTick系统定时器精准延时

延时函数

SysTick->LOAD中的值为计数值
计算方法为工作频率值/分频值
比如工作频率/1000 则周期为1ms

以ADuCM4050为例:

#include "ADuCM4050.h"

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
	while(ms--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
	while(us--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍

Cortex-M架构SysTick系统定时器阻塞和非阻塞延时

阻塞延时

首先是最常用的阻塞延时

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	while(ms--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	while(us--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

50000000表示工作频率
分频后即可得到不同的延时时间
以此类推

那么 不用两个嵌套while循环 也可以写成:

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器

	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	
	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

但是这种写法有个弊端
那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作

而LOAD如果最大是32位 也就是4294967295

晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s

固最大定时时间为85s

但用嵌套while的话 最大可以支持定时4294967295*85s

非阻塞延时

如果采用非阻塞的话 直接改写第二种方法就好了:

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器

	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	
	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

将等待和关闭定时器语句去掉
在使用时加上判断即可变为阻塞:

delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;

在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待

不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下

故可以通过内部定时器来进行非阻塞延时函数的编写

基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了

位带操作

位带代码

M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
M0架构的单片机 其输出口地址为端口地址+12 输入为+8
以ADuCM4050为列:

位带宏定义
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

#define GPIO0_ODR_Addr    (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr    (ADI_GPIO0_BASE+16) //0x40020010

#define GPIO1_ODR_Addr    (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr    (ADI_GPIO1_BASE+16) //0x40020050

#define GPIO2_ODR_Addr    (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr    (ADI_GPIO2_BASE+16) //0x40020090

#define GPIO3_ODR_Addr    (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr    (ADI_GPIO3_BASE+16) //0x400200D0

#define P0_O(n)   	BIT_ADDR(GPIO0_ODR_Addr,n)  //输出 
#define P0_I(n)    	BIT_ADDR(GPIO0_IDR_Addr,n)  //输入 

#define P1_O(n)   	BIT_ADDR(GPIO1_ODR_Addr,n)  //输出 
#define P1_I(n)    	BIT_ADDR(GPIO1_IDR_Addr,n)  //输入 

#define P2_O(n)   	BIT_ADDR(GPIO2_ODR_Addr,n)  //输出 
#define P2_I(n)    	BIT_ADDR(GPIO2_IDR_Addr,n)  //输入 

#define P3_O(n)   	BIT_ADDR(GPIO3_ODR_Addr,n)  //输出 
#define P3_I(n)    	BIT_ADDR(GPIO3_IDR_Addr,n)  //输入 

#define Port0			(ADI_GPIO_PORT0)
#define Port1			(ADI_GPIO_PORT1)
#define Port2			(ADI_GPIO_PORT2)
#define Port3			(ADI_GPIO_PORT3)

#define Pin0			(ADI_GPIO_PIN_0)
#define Pin1			(ADI_GPIO_PIN_1)
#define Pin2			(ADI_GPIO_PIN_2)
#define Pin3			(ADI_GPIO_PIN_3)
#define Pin4			(ADI_GPIO_PIN_4)
#define Pin5			(ADI_GPIO_PIN_5)
#define Pin6			(ADI_GPIO_PIN_6)
#define Pin7			(ADI_GPIO_PIN_7)
#define Pin8			(ADI_GPIO_PIN_8)
#define Pin9			(ADI_GPIO_PIN_9)
#define Pin10			(ADI_GPIO_PIN_10)
#define Pin11			(ADI_GPIO_PIN_11)
#define Pin12			(ADI_GPIO_PIN_12)
#define Pin13			(ADI_GPIO_PIN_13)
#define Pin14			(ADI_GPIO_PIN_14)
#define Pin15			(ADI_GPIO_PIN_15)

void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);

void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);

void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);

void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);

void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);

#endif

总线函数
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"

void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{
	switch(port)
	{
		case 0:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 1:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 2:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 3:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		default:port=0;break;
	}	
}

void GPIO_BUS_OUT(unsigned int port,unsigned int num)  //num最大为0xffff
{
	int i;
	for(i=0;i<16;i++)
	{
		GPIO_OUT(port,i,(num>>i)&0x0001);
	}
}


void P0_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P0_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P0_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P0_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P1_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P1_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P1_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P1_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P2_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P2_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P2_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P2_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P3_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P3_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P3_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P3_I(i)<<i)&0xFFFF;
	}
	return num;
}

一、位带操作理论及实践

位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版

位带区: 支持位带操作的地址区

位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)

位带操作对于硬件 I/O 密集型的底层程序最有用处

支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。

位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。
在这里插入图片描述
(1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
(2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)

只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行

在这里插入图片描述

要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。

关于GPIO引脚对应的访问地址,可以参考以下公式
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

如:端口F访问的起始地址GPIOF_BASE

#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)

在这里插入图片描述

但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可

例如:

GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14

寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

设置PF9引脚的话:

uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)

封装一下:

#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)

现在 可以把通用部分封装成一个小定义:

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

那么 设置PF引脚的函数可以定义:

#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414   
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 

#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

若使PF9输入输出则:

PF_O(9)=1;  //输出高电平
uint8_t dat = PF_I(9);  //获取PF9引脚的值

总线输入输出:

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PF_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PF_I(i)<<i)&0xFFFF;
	}
	return num;
}

STM32的可用下面的函数:

#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     

#define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 
 
#define PA_O(n)   	BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PA_I(n)    	BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PB_O(n)   	BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PB_I(n)    	BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PC_O(n)   	BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PC_I(n)    	BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PD_O(n)   	BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PD_I(n)    	BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PE_O(n)   	BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PE_I(n)    	BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PG_O(n)   	BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PG_I(n)    	BIT_ADDR(GPIOG_IDR_Addr,n)  //输入

#define PH_O(n)   	BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PH_I(n)    	BIT_ADDR(GPIOH_IDR_Addr,n)  //输入

#define PI_O(n)			BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PI_I(n)   	BIT_ADDR(GPIOI_IDR_Addr,n)  //输入

void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);

void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);

void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);

void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);

void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);

void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);

void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);

void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);

void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);

#endif

#include "GPIO.h"

void PA_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PA_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PA_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PA_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PB_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PB_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PB_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PB_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PC_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PC_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PC_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PC_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PD_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PD_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PD_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PD_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PE_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PE_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PE_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PE_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PF_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PF_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PG_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PG_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PG_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PG_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PH_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PH_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PH_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PH_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PI_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PI_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PI_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PI_I(i)<<i)&0xFFFF;
	}
	return num;
}

二、如何判断MCU的外设是否支持位带

根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述
在这里插入图片描述
也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值

位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改

STM32L476的GPIO就不行:
在这里插入图片描述
AHB2的都不能用位带
ABP 还有AHB1都可以用
在这里插入图片描述
但是L476的寄存器里面 GPIO和ADC都是AHB2