Spring 项目接入 DeepSeek,分享两种超简单的方式!

发布于:2025-02-13 ⋅ 阅读:(13) ⋅ 点赞:(0)

⭐自荐一个非常不错的开源 Java 面试指南:JavaGuide (Github 收获148k Star)。这是我在大三开始准备秋招面试的时候创建的,目前已经持续维护 6 年多了,累计提交了 5600+ commit ,共有 550+ 多位贡献者共同参与维护和完善。

DeepSeek 作为一款卓越的国产 AI 模型,越来越多的公司考虑在自己的应用中集成。对于 Java 应用来说,我们可以借助 Spring AI 集成 DeepSeek,非常简单方便!

相关文章推荐:

Spring AI 是什么?

Spring AI 从著名的 Python 项目(例如 LangChain 和 LlamaIndex)中汲取灵感,解决了 AI 集成中的核心挑战:将企业数据和 API 与 AI 模型连接起来。

你可以将 Spring AI 看作是一个适配器或者高层封装,用来帮你更方便地集成和使用不同的 AI 模型。它的核心目标是简化开发流程,降低使用多种 AI 服务时的复杂性,同时提升代码的可维护性和灵活性。

Spring AI 的主要功能包括:

  • 统一 API: Spring AI 提供了一套统一的接口,用来调用不同的 AI 模型(例如 OpenAI、Hugging Face、DeepSeek、Gemini 等)。开发者只需要学习 Spring AI 的 API,就能无缝对接各种 AI 服务,而无需深入了解各家服务的底层实现和差异。
  • 简化配置: Spring AI 提供了自动化的配置管理,例如 API 密钥、模型参数等。你只需要简单地在配置文件中定义所需的参数,Spring AI 就会自动完成初始化和连接,避免繁琐的手动配置。
  • 易于切换: Spring AI 的抽象设计使得更换 AI 提供商变得非常简单。开发者只需要修改少量配置,而不用修改业务代码,从而实现灵活的 AI 服务切换,适应不同场景需求。

Spring AI 集成 DeepSeek

这里介绍两种方式:

  1. spring-ai-openai starter:伪装成 OpenAI,DeepSeek 提供了 OpenAI 兼容模式。
  2. spring-ai-ollama-spring-boot-starter:通过 Ollama 本地部署一个 DeepSeek R1 蒸馏版。

伪装成 OpenAI

DeepSeek 其实提供了 OpenAI 兼容模式,只要在请求头里加个api_key,就能假装自己在调 OpenAI。Spring AI 的 openai starter 本质上是通过 RestTemplate 发请求,我们只需要改改 URL 和认证方式。

1、添加依赖:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
    <version>0.8.1</version>
</dependency>

2、修改配置文件 application.yml

spring:
  ai:
    openai:
      base-url: https://api.deepseek.com/v1  # DeepSeek的OpenAI式端点
      api-key: sk-your-deepseek-key-here
      chat.options:
        model: deepseek-chat  # 指定DeepSeek的模型名称

3、DeepSeek API KEY 可以在 DeepSeek 开放平台中自行创建,地址:https://platform.deepseek.com/api_keys

4、在代码中调用:

@RestController
@RequestMapping("/ai")
@Slf4j
public class ChatController {

 private final ChatClient chatClient;

 // 构造方法注入 ChatClient.Builder,用于构建 ChatClient 实例
 public ChatController(ChatClient.Builder chatClientBuilder) {
  this.chatClient = chatClientBuilder.build();
 }

 @GetMapping("/chat")
 public String generate(@RequestParam(value = "message") String message) {
  log.info("Generating response");
  // 调用 ChatClient 的 prompt 方法生成响应
  // 1. prompt(message): 创建一个包含用户输入消息的 Prompt 对象
  // 2. call(): 调用 ChatClient 与 AI 模型交互以获取响应
  // 3. content(): 提取响应的内容部分
  return chatClient.prompt(message).call().content();
 }

}

在运行时,你可以通过在 Prompt 调用中添加新的、针对请求的选项来覆盖默认配置。例如,要为特定请求覆盖默认模型和温度,可以这样实现:

ChatResponse response = chatModel.call(
    new Prompt(
        "Generate the names of 5 famous pirates.",
        OpenAiChatOptions.builder()
            .withModel("deepseek-chat")
            .withTemperature(0.4)
        .build()
    ));

本地化部署

如果想要把 DeepSeek 部署在内网服务器,或者你想在本地跑个小模型,可以采用这种方式来在本地部署一个 DeepSeek R1 蒸馏版。

1、从官方网站下载并安装 Ollama:https://ollama.com

Ollama 可以让你轻松在自己的电脑上运行各种强大的 AI 模型,就像运行普通软件一样简单。

2、通过 Ollama 拉取 DeepSeek 模型:

ollama pull deepseek-r1:1.5b
ollama list deepseek

更多版本可以在这里查看:https://ollama.com/library/deepseek-r1

3、添加依赖:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
    <version>0.8.1</version>
</dependency>

4、修改配置:

spring:
  ai:
    ollama:
      base-url: http://localhost:11434
      chat:
        model: deepseek-r1:1.5b  # 与本地模型名称对应

4、在代码中调用:

@RestController
@RequestMapping("/ai")
public class ChatController {
    private final ChatClient chatClient;

    // 构造方法注入 ChatClient.Builder,用于构建 ChatClient 实例
    public ChatController(ChatClient.Builder chatClient) {
        this.chatClient = chatClient.build();
    }

     @GetMapping("/chat")
    public ResponseEntity<Flux<String>> chat(@RequestParam(value = "message") String message) {
        try {
            // 调用 ChatClient 生成响应,并以 Flux<String>(响应流)形式返回
            Flux<String> response = chatClient.prompt(message).stream().content();
            return ResponseEntity.ok(response);
        } catch (Exception e) {
            return ResponseEntity.badRequest().build();
        }
    }
}

Spring Cloud Alibaba AI 中也支持这种方式,并且官网上提供了详细的方法:https://java2ai.com/blog/spring-ai-alibaba-ollama-deepseek/

总结

这篇文章主要介绍了 Spring AI 以及如何通过 Spring AI 集成 DeepSeek:

  1. 伪装成 OpenAI: DeepSeek 可以假装自己是 OpenAI,直接用 Spring AI 的 OpenAI starter 就行,改改配置就好,就像换个链接一样简单。
  2. 本地部署: 如果你想把 DeepSeek 放在自己服务器上,或者想在电脑上跑个小模型玩玩,可以用 Ollama。先下载 Ollama,再下载 DeepSeek 模型,然后用 Spring AI 的 Ollama starter,也超级简单。Spring Cloud Alibaba AI 也支持这种玩法,官网有教程。