模块出处
[SPL 25] [link] [code] KAN See In the Dark
模块名称
Kolmogorov-Arnold Network Block (KAN-Block)
模块作用
用于vision的KAN结构
模块结构
模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class KANLinear(torch.nn.Module):
def __init__(
self,
in_features,
out_features,
grid_size=5,
spline_order=3,
scale_noise=0.1,
scale_base=1.0,
scale_spline=1.0,
enable_standalone_scale_spline=True,
base_activation=torch.nn.SiLU,
grid_eps=0.02,
grid_range=[-1, 1],
):
super(KANLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.grid_size = grid_size
self.spline_order = spline_order
self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
self.bias = nn.Parameter(torch.Tensor(out_features))
h = (grid_range[1] - grid_range[0]) / grid_size
grid = (
(
torch.arange(-spline_order, grid_size + spline_order + 1) * h
+ grid_range[0]
)
.expand(in_features, -1)
.contiguous()
)
self.register_buffer("grid", grid)
self.base_weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
self.spline_weight = torch.nn.Parameter(
torch.Tensor(out_features, in_features, grid_size + spline_order)
)
if enable_standalone_scale_spline:
self.spline_scaler = torch.nn.Parameter(
torch.Tensor(out_features, in_features)
)
self.scale_noise = scale_noise
self.scale_base = scale_base
self.scale_spline = scale_spline
self.enable_standalone_scale_spline = enable_standalone_scale_spline
self.base_activation = base_activation()
self.grid_eps = grid_eps
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base)
with torch.no_grad():
noise = (
(
torch.rand(self.grid_size + 1, self.in_features, self.out_features)
- 1 / 2
)
* self.scale_noise
/ self.grid_size
)
self.spline_weight.data.copy_(
(self.scale_spline if not self.enable_standalone_scale_spline else 1.0)
* self.curve2coeff(
self.grid.T[self.spline_order : -self.spline_order],
noise,
)
)
if self.enable_standalone_scale_spline:
# torch.nn.init.constant_(self.spline_scaler, self.scale_spline)
torch.nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)
def b_splines(self, x: torch.Tensor):
"""
Compute the B-spline bases for the given input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_features).
Returns:
torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order).
"""
assert x.dim() == 2 and x.size(1) == self.in_features
grid: torch.Tensor = (
self.grid
) # (in_features, grid_size + 2 * spline_order + 1)
x = x.unsqueeze(-1)
bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype)
for k in range(1, self.spline_order + 1):
bases = (
(x - grid[:, : -(k + 1)])
/ (grid[:, k:-1] - grid[:, : -(k + 1)])
* bases[:, :, :-1]
) + (
(grid[:, k + 1 :] - x)
/ (grid[:, k + 1 :] - grid[:, 1:(-k)])
* bases[:, :, 1:]
)
assert bases.size() == (
x.size(0),
self.in_features,
self.grid_size + self.spline_order,
)
return bases.contiguous()
def curve2coeff(self, x: torch.Tensor, y: torch.Tensor):
"""
Compute the coefficients of the curve that interpolates the given points.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_features).
y (torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).
Returns:
torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order).
"""
assert x.dim() == 2 and x.size(1) == self.in_features
assert y.size() == (x.size(0), self.in_features, self.out_features)
A = self.b_splines(x).transpose(
0, 1
) # (in_features, batch_size, grid_size + spline_order)
B = y.transpose(0, 1) # (in_features, batch_size, out_features)
solution = torch.linalg.lstsq(
A, B
).solution # (in_features, grid_size + spline_order, out_features)
result = solution.permute(
2, 0, 1
) # (out_features, in_features, grid_size + spline_order)
assert result.size() == (
self.out_features,
self.in_features,
self.grid_size + self.spline_order,
)
return result.contiguous()
@property
def scaled_spline_weight(self):
return self.spline_weight * (
self.spline_scaler.unsqueeze(-1)
if self.enable_standalone_scale_spline
else 1.0
)
def forward(self, x: torch.Tensor):
assert x.dim() == 2 and x.size(1) == self.in_features
base_output = F.linear(self.base_activation(x), self.base_weight)
spline_output = F.linear(
self.b_splines(x).view(x.size(0), -1),
self.scaled_spline_weight.view(self.out_features, -1),
)
return base_output + spline_output
@torch.no_grad()
def update_grid(self, x: torch.Tensor, margin=0.01):
assert x.dim() == 2 and x.size(1) == self.in_features
batch = x.size(0)
splines = self.b_splines(x) # (batch, in, coeff)
splines = splines.permute(1, 0, 2) # (in, batch, coeff)
orig_coeff = self.scaled_spline_weight # (out, in, coeff)
orig_coeff = orig_coeff.permute(1, 2, 0) # (in, coeff, out)
unreduced_spline_output = torch.bmm(splines, orig_coeff) # (in, batch, out)
unreduced_spline_output = unreduced_spline_output.permute(
1, 0, 2
) # (batch, in, out)
# sort each channel individually to collect data distribution
x_sorted = torch.sort(x, dim=0)[0]
grid_adaptive = x_sorted[
torch.linspace(
0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device
)
]
uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size
grid_uniform = (
torch.arange(
self.grid_size + 1, dtype=torch.float32, device=x.device
).unsqueeze(1)
* uniform_step
+ x_sorted[0]
- margin
)
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
grid = torch.concatenate(
[
grid[:1]
- uniform_step
* torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1),
grid,
grid[-1:]
+ uniform_step
* torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1),
],
dim=0,
)
self.grid.copy_(grid.T)
self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))
def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
"""
Compute the regularization loss.
This is a dumb simulation of the original L1 regularization as stated in the
paper, since the original one requires computing absolutes and entropy from the
expanded (batch, in_features, out_features) intermediate tensor, which is hidden
behind the F.linear function if we want an memory efficient implementation.
The L1 regularization is now computed as mean absolute value of the spline
weights. The authors implementation also includes this term in addition to the
sample-based regularization.
"""
l1_fake = self.spline_weight.abs().mean(-1)
regularization_loss_activation = l1_fake.sum()
p = l1_fake / regularization_loss_activation
regularization_loss_entropy = -torch.sum(p * p.log())
return (
regularize_activation * regularization_loss_activation
+ regularize_entropy * regularization_loss_entropy
)
class DW_bn_relu(nn.Module):
def __init__(self, dim=768):
super(DW_bn_relu, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
self.bn = nn.BatchNorm2d(dim)
self.relu = nn.ReLU()
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = self.bn(x)
x = self.relu(x)
x = x.flatten(2).transpose(1, 2)
return x
class KANBlock(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., shift_size=5, version=4):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.dim = in_features
grid_size=5
spline_order=3
scale_noise=0.1
scale_base=1.0
scale_spline=1.0
base_activation=torch.nn.SiLU
grid_eps=0.02
grid_range=[-1, 1]
self.fc1 = KANLinear(
in_features,
hidden_features,
grid_size=grid_size,
spline_order=spline_order,
scale_noise=scale_noise,
scale_base=scale_base,
scale_spline=scale_spline,
base_activation=base_activation,
grid_eps=grid_eps,
grid_range=grid_range,
)
self.fc2 = KANLinear(
hidden_features,
out_features,
grid_size=grid_size,
spline_order=spline_order,
scale_noise=scale_noise,
scale_base=scale_base,
scale_spline=scale_spline,
base_activation=base_activation,
grid_eps=grid_eps,
grid_range=grid_range,
)
self.fc3 = KANLinear(
hidden_features,
out_features,
grid_size=grid_size,
spline_order=spline_order,
scale_noise=scale_noise,
scale_base=scale_base,
scale_spline=scale_spline,
base_activation=base_activation,
grid_eps=grid_eps,
grid_range=grid_range,
)
self.dwconv_1 = DW_bn_relu(hidden_features)
self.dwconv_2 = DW_bn_relu(hidden_features)
self.dwconv_3 = DW_bn_relu(hidden_features)
self.drop = nn.Dropout(drop)
self.shift_size = shift_size
self.pad = shift_size // 2
def forward(self, x, H, W):
B, N, C = x.shape
x = self.fc1(x.reshape(B*N,C))
x = x.reshape(B,N,C).contiguous()
x = self.dwconv_1(x, H, W)
x = self.fc2(x.reshape(B*N,C))
x = x.reshape(B,N,C).contiguous()
x = self.dwconv_2(x, H, W)
x = self.fc3(x.reshape(B*N,C))
x = x.reshape(B,N,C).contiguous()
x = self.dwconv_3(x, H, W)
return x
if __name__ == '__main__':
x = torch.randn([1, 22*22, 128])
kan = KANBlock(in_features=128)
out = kan(x, H=22, W=22)
print(out.shape) # [1, 22*22, 128]