1.首先下载模型,加载模型
import torch
import numpy as np
import webrtcvad
import pyaudio
import queue
import threading
from datetime import datetime
from faster_whisper import WhisperModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline
from transformers import T5ForConditionalGeneration, T5Tokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
save_directory = "./faster-distil-whiper-large-v3-local" # 替换为你希望保存的本地路径
# en_zh_directory = "./opus-mt-en-zh-local" # 替换为你希望保存的本地路径
en_zh_directory = "./t5-translate-en-ru-zh-base-200-sent-local" # 替换为你希望保存的本地路径
whisperModel = WhisperModel(save_directory, device="cuda", compute_type="float32")
model = T5ForConditionalGeneration.from_pretrained(en_zh_directory)
model.eval()
model.to(device)
tokenizer = T5Tokenizer.from_pretrained(en_zh_directory)
vad = webrtcvad.Vad(3) # 设置 VAD 灵敏度(0-3,3 最敏感)
prefix = 'translate to zh: '
2.配置麦克风
# 初始化 PyAudio
p = pyaudio.PyAudio()
# 设置音频流参数
FORMAT = pyaudio.paInt16 # 16-bit 音频格式
CHANNELS = 1 # 单声道
RATE = 16000 # 采样率(Whisper 需要 16kHz)
FRAME_DURATION = 20 # 每帧的时长(ms)
CHUNK = int(RATE * FRAME_DURATION / 1000) # 每帧的帧数
MIN_SILENCE_DURATION = 0.2 # 最小静音时长(秒)
3.队列构建,构建录音基本参数
# 共享队列,用于录音和推理线程之间的数据交换
audio_queue = queue.Queue()
silence_frames = 0
silence_frames_lock = threading.Lock()
4.构建录音函数
# 录音线程
def record_audio():
global silence_frames
stream = p.open(
format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
)
print("开始录音...按 Ctrl+C 停止")
try:
while True:
# 从麦克风读取音频数据
data = stream.read(CHUNK)
audio_data = np.frombuffer(data, dtype=np.int16).astype(np.float32) / 32768.0
# 使用 VAD 检测语音活动
if vad.is_speech(data, RATE):
audio_queue.put(audio_data)
with silence_frames_lock:
silence_frames = 0 # 重置静音计数器
else:
with silence_frames_lock:
silence_frames += 1 # 重置静音计数器
except KeyboardInterrupt:
print("录音停止")
finally:
stream.stop_stream()
stream.close()
p.terminate()
5.构建翻译函数
def process_audio():
global silence_frames
audio_buffer = np.array([], dtype=np.float32)
silence_frames = 0
while True:
try:
# 从队列中获取音频数据
audio_data = audio_queue.get(timeout=1) # 超时 1 秒
audio_buffer = np.concatenate((audio_buffer, audio_data))
except Exception as e:
pass
current_silence_frames = 0
# 检查静音计数器
with silence_frames_lock:
current_silence_frames = silence_frames
# 如果检测到静音时间超过阈值,处理累积的音频
if (current_silence_frames > MIN_SILENCE_DURATION * (RATE / CHUNK)) or len(audio_buffer) > 320 * 200:
if(len(audio_buffer) > 0):#, language="en"
segments, _ = whisperModel.transcribe(audio_buffer,vad_filter=True,vad_parameters=dict(min_silence_duration_ms=200), language="en", condition_on_previous_text=True)
for segment in segments:
if(segment.text == ""):
continue
elif(segment.text == "Thank you."):
print("[%s] %s (%s)" % (str(datetime.now()), "感谢", segment.text))
else:
src_text = prefix + segment.text
input_ids = tokenizer(src_text, return_tensors="pt")
generated_tokens = model.generate(**input_ids.to(device))
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print("[%s] %s (%s)" % (str(datetime.now()), result[0], segment.text))
# result = pipeline(segment.text)
# print("[%s] %s (%s)" % (str(datetime.now()), result[0]['translation_text'], segment.text))
audio_buffer = np.array([], dtype=np.float16)
silence_frames = 0
6.启动线程,启动程序
# 启动录音线程和推理线程
record_thread = threading.Thread(target=record_audio)
process_thread = threading.Thread(target=process_audio)
record_thread.start()
process_thread.start()
![](https://i-blog.csdnimg.cn/direct/b0ad4a0cb00740e49ad85e4e5a9ceb24.png)