使用verilog 实现 cordic 算法 ----- 旋转模式

发布于:2025-02-15 ⋅ 阅读:(6) ⋅ 点赞:(0)

1-设计流程

● 了解cordic 算法原理,公式,模式,伸缩因子,旋转方向等,推荐以下链接视频了解 cordic 算法。哔哩哔哩-cordic算法原理讲解
● 用matlab 或者 c 实现一遍算法
● 在FPGA中用 verilog 实现,注意使用有符号变量以及小数点定点化处理

备注:
在verilog 需要用 ram 存储的值:列举了13次迭代的tan值和对应角度;
在这里插入图片描述

2-RTL

分享自己写的一个cordic rtl :

2-1 测试代码 ,测试 一二三四象限内角度的sin cos 值。

module test_my_cordic(

	input i_clk,
	input i_rst

	);


reg signed	[31:0]	r_angle;
reg					r_valid ;

wire				w_ready;
wire signed	[31:0]	r_x = 39796;
wire signed	[31:0]	r_y = 0;

(*dont_touch = "true"*)
my_cordic inst_my_cordic
(
			.i_clk             (i_clk),
			.i_rst             (i_rst),
			.i_iteration_count (16), //设置迭代次数 ,最大16次
			.i_setx            (r_x),
			.i_sety            (r_y),
			.i_set_angle       (r_angle),
			.i_valid           (r_valid),
			.o_sin             (),
			.o_cos             (),
			.o_valid           (),
			.o_ready           (w_ready)
);

/*  测试 第四象限  0 ~ -90°
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_angle <= 0;
	end else if (r_angle == -5898240 && w_ready) begin
		r_angle <= 0;	
	end else if (w_ready && r_valid) begin
		r_angle <= r_angle - 655360;	
	end else begin
		r_angle <= r_angle;			
	end
end
*/

// 测试 第一象限 0 ~ 90°
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_angle <= 0;
	end else if (r_angle == 5898240 && w_ready) begin
		r_angle <= 0;	
	end else if (w_ready && r_valid) begin
		r_angle <= r_angle + 655360;	
	end else begin
		r_angle <= r_angle;			
	end
end

/* //测试 第三象限 -180 ~ -90°
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_angle <= -11796480;
	end else if (r_angle == -5898240 && w_ready) begin
		r_angle <= -11796480;	
	end else if (w_ready && r_valid) begin
		r_angle <= r_angle + 655360;	
	end else begin
		r_angle <= r_angle;			
	end
end
*/

/*// 测试 第二象限 90° ~ 180 °
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_angle <= 5898240;
	end else if (r_angle == 11796480 && w_ready) begin
		r_angle <= 0;	
	end else if (w_ready && r_valid) begin
		r_angle <= r_angle + 655360;	
	end else begin
		r_angle <= r_angle;			
	end
end
*/

always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) 
		r_valid <= 0;
	else if (w_ready && r_valid)
		r_valid <= 0;
	else if  (w_ready)
		r_valid <= 1;			
	else 
		r_valid <= 0;	
end

endmodule

2-2 核心代码:

//运算公式:
//x(i+1) = x(i) - y(i) * di * 2^(-i)
//y(i+1) = y(i) + x(i) * di * 2^(-i)
//z(i+1) = z(i) - arctan(di * 2^(-i))
//author : 技术小白爱FPGA
//备注:cordic 算法,旋转模式,迭代次数固定 16次,可以自己任意设置,最大16次

module my_cordic (

	input                    i_clk                   ,
	input                    i_rst                   ,
	input [4:0]              i_iteration_count       ,
      
	input  signed [31:0]     i_setx                  ,
	input  signed [31:0]     i_sety                  ,
	input  signed [31:0]     i_set_angle             ,
	input                    i_valid                 ,

	output   signed [31:0]   o_sin                   ,
	output   signed [31:0]   o_cos                   ,
	output                   o_valid                 ,
	output                   o_ready    

);

wire signed	[31:0]	r_arctan [0:15];
wire				r_di ;

reg signed	[31:0]	r_sin;
reg signed	[31:0]	r_cos;
reg signed	[31:0]	r_setx ;
reg signed	[31:0]	r_sety ;
reg signed	[31:0]	r_angle ;
reg	[4:0]			r_count;
reg					r_run_cal;
reg					ro_valid ;
reg					ro_ready ;
reg	[1:0]			r_site;

assign o_sin   = r_sin;
assign o_cos   = r_cos;
assign o_ready = ro_ready;
assign o_valid = ro_valid;

//存储 arctan 值,整体表示-----扩大2^16倍数,相当于将小数点定在16bit位置上
assign	r_arctan[0] = 2949120;
assign	r_arctan[1] = 1740967;
assign	r_arctan[2] = 919879;
assign	r_arctan[3] = 466945;
assign	r_arctan[4] = 234378;
assign	r_arctan[5] = 117303;
assign	r_arctan[6] = 58666;
assign	r_arctan[7] = 29334;
assign	r_arctan[8] = 14667;
assign	r_arctan[9] = 7333;
assign	r_arctan[10]= 3666;
assign	r_arctan[11]= 1833;
assign	r_arctan[12]= 916;
assign	r_arctan[13]= 458;
assign	r_arctan[14]= 229;
assign	r_arctan[15]= 114;

//判断旋转的方向
assign r_di = (r_angle > 0 && r_run_cal)?1:0;

//运算迭代  >>>  --- > 算数右移,不改变符号位; 如果使用 >> ,移位,高位补0;
always @ (posedge i_clk) 
begin
	if (i_valid) begin
		r_setx <= i_setx;
		r_sety <= i_sety;
	end
	else if (r_run_cal && r_di ) begin
		r_setx <= r_setx - (r_sety >>> r_count);
		r_sety <= r_sety + (r_setx >>> r_count);		
	end else if (r_run_cal && !r_di) begin
		r_setx <= r_setx + (r_sety >>> r_count);
		r_sety <= r_sety - (r_setx >>> r_count);	
	end
end

//旋转角度的迭代,输入角度的象限处理
always @ (posedge i_clk ) 
begin
	// 处理 一四象限 -90° ~ 90°
	if (i_valid && (i_set_angle >= -5898240 && i_set_angle <= 5898240 ) ) begin
		r_angle <= i_set_angle;
		r_site  <= 2'b00;
	// 处理 二象限 90° ~ 180°
	end else if (i_valid && (i_set_angle > 5898240 && i_set_angle <= 11796480 )) begin
		r_angle <= 11796480 - i_set_angle;
		r_site  <= 2'b10;
	// 处理 三象限 -180° ~ -90°
	end else if (i_valid && (i_set_angle >= -11796480 && i_set_angle < -5898240 )) begin
		r_angle <= -11796480 - i_set_angle ;
		r_site  <= 2'b11;
	end else if (r_di && r_run_cal) begin
		r_angle <= r_angle - r_arctan[r_count];		
	end
	else if (!r_di && r_run_cal) begin
		r_angle <= r_angle + r_arctan[r_count];		
	end else begin
		r_angle <= r_angle;
		r_site  <= r_site ;
	end
end

//迭代运算次数
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_count <= 0;
	end else if (r_count == i_iteration_count -1) begin
		r_count <= 0;
	end
	else if (r_run_cal) begin
		r_count <= r_count + 1;
	end
end

//迭代运算标志
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_run_cal <= 0;
	end
	else if (r_count == i_iteration_count -1) begin
		r_run_cal <= 0;	
	end
	else if(i_valid) begin
		r_run_cal <= 1;		
	end
	else begin
		r_run_cal <= r_run_cal;	
	end
end

//最终输出的 sin cos 值
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_sin <= 0;
		r_cos <= 0;
	end
	else if (r_site == 2'b00 && r_count == i_iteration_count -1) begin
		r_sin <= r_sety;
		r_cos <= r_setx;		
	end else if (r_site == 2'b10 && r_count == i_iteration_count -1) begin
		r_sin <= r_sety;
		r_cos <= -r_setx;	
	end else if (r_site == 2'b11 && r_count == i_iteration_count -1) begin
		r_sin <= r_sety;
		r_cos <= -r_setx;	
	end
end

always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		ro_ready <= 1;
	end
	else if (i_valid || r_run_cal) begin
		ro_ready <= 0;		
	end else begin
		ro_ready <= 1;
	end
end

//最终输出的 sin cos valid 信号
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) 
		ro_valid <= 0;
	else if (r_count == i_iteration_count -1)
		ro_valid <= 1;		
	else 
		ro_valid <= 0;	
end

endmodule

2-3 tb仿真代码

module tb_cordic();

reg i_clk;
reg i_rst;

initial begin 
	i_clk = 0;
	i_rst = 1;
	#100
	@(posedge i_clk)
	i_rst =0;
end

always #10 i_clk = ~i_clk;

test_my_cordic inst_test_my_cordic (.i_clk(i_clk), .i_rst(i_rst));

endmodule

3-仿真

a. 首先 有符号的信号需要设置 小数点位数,如下图所示:
在这里插入图片描述
b. 以第一象限为例子:0 ~ 90°
在这里插入图片描述
c. 运算处理 持续周期 就是 迭代次数:
在这里插入图片描述

d. 可借助 计算机科学模式验证结果:
在这里插入图片描述

4-可优化空间

● r_ange逻辑级数;
● 360°以内,高于180°和小于-180°处理
● 迭代运算拆成流水线形式;
● 加上向量模式
● 整体其它逻辑的优化