Redis-缓存过期和内存淘汰

发布于:2025-02-21 ⋅ 阅读:(20) ⋅ 点赞:(0)

过期删除

Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。

如何设置过期时间

Redis提供了四个命令来设置过期时间(生存时间)。

EXPIRE <key> <ttl> :表示将键 key 的生存时间设置为 ttl 秒。
PEXPIRE <key> <ttl> :表示将键 key 的生存时间设置为 ttl 毫秒。
EXPIREAT <key> <timestamp> :表示将键 key 的生存时间设置为 timestamp 所指定的秒数时间戳。
PEXPIREAT <key> <timestamp> :表示将键 key 的生存时间设置为 timestamp 所指定的毫秒数时间戳。

注意:在Redis内部实现中,前面三个设置过期时间的命令最后都会转换成最后一个PEXPIREAT 命令来完成。

在设置字符串时,也可以同时对 key 设置过期时间,共有 3 种命令:

  • set <key> <value> ex <n>:设置键值对的时候,同时指定过期时间(精确到秒);
  • set <key> <value> px <n>:设置键值对的时候,同时指定过期时间(精确到毫秒);
  • setex <key> <n> <valule>:设置键值对的时候,同时指定过期时间(精确到秒)。

另外补充几个个知识点:

  1. 移除键的过期时间

PERSIST :表示将key的过期时间移除。

  1. 返回键的剩余生存时间

TTL :以秒的单位返回键 key 的剩余生存时间。

PTTL :以毫秒的单位返回键 key 的剩余生存时间。

判断key是否过期

在Redis内部,每当我们设置一个键的过期时间时,Redis就会将该键带上过期时间存放到一个过期字典中。
当我们查询一个键时,Redis便首先检查该键是否存在过期字典中,如果存在,那就获取其过期时间。
然后将过期时间和当前系统时间进行比对,比系统时间大,那就没有过期;反之判定该键过期。

typedef struct redisDb {
  dict *dict;    /* 数据库键空间,存放着所有的键值对 */
  dict *expires; /* 键的过期时间 */
  ....
}redisDb;

过期字典数据结构结构如下:

  • 过期字典的 key 是一个指针,指向某个键对象;
  • 过期字典的 value 是一个 long long 类型的整数,这个整数保存了 key 的过期时间;
    过期字典的数据结构如下图所示:
    在这里插入图片描述
    字典实际上是哈希表,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找。
    当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:
  • 如果不在,则正常读取键值;
  • 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。
    过期判断如下图:
    加粗样式

过期删除策略有哪些

通常删除某个key,我们有如下三种方式进行处理。

定时删除

在设置某个key 的过期时间同时,我们创建一个定时器,让定时器在该过期时间到来时,立即执行对其进行删除的操作。
优点:定时删除对内存是最友好的,能够保存内存的key一旦过期就能立即从内存中删除。
缺点:对CPU最不友好,在过期键比较多的时候,删除过期键会占用一部分 CPU 时间,对服务器的响应时间和吞吐量造成影响。

惰性删除

设置该key 过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。
优点:对 CPU友好,我们只会在使用该键时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查。
缺点:对内存不友好,如果一个键已经过期,但是一直没有使用,那么该键就会一直存在内存中,如果数据库中有很多这种使用不到的过期键,这些键便永远不会被删除,内存永远不会释放。从而造成内存泄漏。

定期删除

每隔一段时间,我们就对一些key进行检查,删除里面过期的key。
优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。
缺点:难以确定删除操作执行的时长和频率。
如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好。
如果执行的太少,那又和惰性删除一样了,过期键占用的内存不会及时得到释放。
另外最重要的是,在获取某个键时,如果某个键的过期时间已经到了,但是还没执行定期删除,那么就会返回这个键的值,这是业务不能忍受的错误。

Redis过期删除策略

前面讨论了删除过期键的三种策略,发现单一使用某一策略都不能满足实际需求,既然单一策略不能满足,那就只能组合使用。
Redis的过期删除策略就是:惰性删除和定期删除两种策略配合使用。
惰性删除:Redis的惰性删除策略由 db.c/expireIfNeeded 函数实现,所有键读写命令执行之前都会调用 expireIfNeeded 函数对其进行检查,如果过期,则删除该键,然后执行键不存在的操作;未过期则不作操作,继续执行原有的命令。

int expireIfNeeded(redisDb *db, robj *key) {
  // 判断 key 是否过期
  if (!keyIsExpired(db,key)) return 0;
   ....
    /* 删除过期键 */
    ....
    // 如果 server.lazyfree_lazy_expire 为 1 表示异步删除,反之同步删除;
     return server.lazyfree_lazy_expire? dbAsyncDelete(db,key) :
      dbSyncDelete(db,key);

定期删除:由redis.c/activeExpireCycle 函数实现,函数以一定的频率运行,每次运行时,都从一定数量的数据库中取出一定数量的随机键进行检查,并删除其中的过期键。
注意:并不是一次运行就检查所有的库,所有的键,而是随机检查一定数量的键。

定期删除函数的运行频率,在Redis中,规定每秒运行10次,在Redis2.8版本后,可以通过修改配置文件redis.conf 的 hz 选项来调整这个次数。
在这里插入图片描述
看上面对这个参数的解释,建议不要将这个值设置超过 100,否则会对CPU造成比较大的压力。

我们看到,通过过期删除策略,对于某些永远使用不到的键,并且多次定期删除也没选定到并删除,那么这些键同样会一直驻留在内存中,又或者在Redis中存入了大量的键,这些操作可能会导致Redis内存不够用,这时候就需要Redis的内存淘汰策略了。

内存淘汰策略

前面说的过期删除策略,是删除已过期的 key,而当 Redis 的运行内存已经超过 Redis 设置的最大内存之后,则会使用内存淘汰策略删除符合条件的 key,以此来保障 Redis 高效的运行。

如何设置Redis最大运行内存

在配置文件redis.conf 中,可以通过参数 maxmemory 来设定最大内
存:
在这里插入图片描述
只有在 Redis 的运行内存达到了我们设置的最大运行内存,才会触发内存淘汰策略。
不同位数的操作系统,maxmemory 的默认值是不同的:

  • 在 64 位操作系统中,maxmemory 的默认值是 0,表示没有内存大小限制,那么不管用户存放多少数据到 Redis 中,Redis 也不会对可用内存进行检查,直到 Redis 实例因内存不足而崩溃也无作为。
  • 在 32 位操作系统中,maxmemory 的默认值是 3G,因为 32 位的机器最大只支持 4GB 的内存,而系统本身就需要一定的内存资源来支持运行,以 32 位操作系统限制最大 3 GB 的可用内存是非常合理的,这样可以避免因为内存不足而导致 Redis 实例崩溃。

Redis内存淘汰策略有哪些

Redis 内存淘汰策略共有八种,这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略.

不进行数据淘汰
  • noeviction : 不移除任何key,只是返回一个写错误并禁止写入 ,默认选项,一般不会选用。但是如果没用数据写入的话,只是单纯的查询或者删除操作的话,还是可以正常工作。
进行数据淘汰的策略

又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。

设置了过期时间的数据中进行淘汰
  • volatile-random:随机淘汰设置了过期时间的任意键值
  • volatile-ttl:优先淘汰更早过期的键值
  • volatile-lru(Redis3.0 之前,默认的内存淘汰策略):淘汰所有设置了过期时间的键值中,最久未使用的键值;
  • volatile-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰所有设置了过期时间的键值中,最少使用的键值;
所有数据范围内进行淘汰
  • allkeys-random:随机淘汰任意键值;
  • allkeys-lru:淘汰整个键值中最久未使用的键值;
  • allkeys-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰整个键值中最少使用的键值。

如何查看当前 Redis 使用的内存淘汰策略?

可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:

127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "noeviction"

可以看出,当前 Redis 使用的是 noeviction 类型的内存淘汰策略,它是 Redis 3.0 之后默认使用的内存淘汰策略,表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。

如何修改Redis内存淘汰策略

设置内存淘汰策略有两种方法:

  • 方式一:通过“config set maxmemory-policy <策略>”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。
  • 方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy <策略>”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。

LRU算法和LFU算法有什么区别

LFU 内存淘汰算法是 Redis 4.0 之后新增内存淘汰策略,那为什么要新增这个算法?
那肯定是为了解决 LRU 算法的问题。
如果你学过MySQL里的Buffer Pool,里面也有个对LRU算法进行的优化,个人感觉思路差不多的.

什么是LRU

LRU算法全称是最近最少使用算法(Least Recently Use),广泛的应用于缓存机制中。当缓存使用的空间达到上限后,就需要从已有的数据中淘汰一部分以维持缓存的可用性,而淘汰数据的选择就是通过LRU算法完成的。
LRU算法的基本思想是基于局部性原理的时间局部性:如果一个信息项正在被访问,那么在近期它很可能还会被再次访问。
所以顾名思义,LRU算法会选出最近最少使用的数据进行淘汰。

传统 LRU 算法的实现是基于「链表」结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可,因为链表尾部的元素就代表最久未被使用的元素。

Redis的LRU

Redis 并没有使用这样的方式实现 LRU 算法,因为传统的 LRU 算法存在两个问题:

  • 需要用链表管理所有的缓存数据,这会带来额外的空间开销
  • 当有数据被访问时,需要在链表上把该数据移动到头端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
    Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存.
    实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。
    当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。
    Redis 实现的 LRU 算法的优点:
  • 不用为所有的数据维护一个大链表,节省了空间占用;
  • 不用在每次数据访问时都移动链表项,提升了缓存的性能;

但是 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。

LFU算法

LFU 全称是 Least Frequently Used 翻译为最近最不常用,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。
所以, LFU 算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。
这样就解决了偶尔被访问一次之后,数据留存在缓存中很长一段时间的问题,相比于 LRU 算法也更合理一些。

Redis如何实现LFU算法的

相比于 LRU 算法的实现,多记录了「数据的访问频次」的信息。Redis 对象的结构如下:

typedef struct redisObject {
...
 // 24 bits,用于记录对象的访问信息
  unsigned lru:24;  
    ...
} robj;

Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同.

LRU中

Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。

LFU中

Redis对象头的 24 bits 的 lru 字段被分成两段来存储,高 16bit 存储 ldt(Last Decrement Time),低 8bit 存储 logc(Logistic Counter)。
在这里插入图片描述

  • ldt 是用来记录 key 的访问时间戳;
  • logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。
    注意,logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的。
    在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系,如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。
    访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。

对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯的 + 1,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。

总结

Redis 使用的过期删除策略是「惰性删除+定期删除」,删除的对象是已过期的 key。

在这里插入图片描述

内存淘汰策略是解决内存过大的问题,当 Redis 的运行内存超过最大运行内存时,就会触发内存淘汰策略,Redis 4.0 之后共实现了 8 种内存淘汰策略,如下:
在这里插入图片描述