华为动态路由-OSPF-完全末梢区域

发布于:2025-02-22 ⋅ 阅读:(17) ⋅ 点赞:(0)

华为动态路由-OSPF-完全末梢区域

一、OSPF简介

1、OSPF概述

  • OSPF是一种开放式的、基于链路状态的内部网关协议(IGP),用于在自治系统内部进行路由选择和通信。

  • OSPF是互联网工程任务组(IETF)定义的标准之一,被广泛应用于企业网络和互联网中。

  • OSPF使用Dijkstra算法计算最短路径,并维护一个基于链路状态的路由数据库,以选择最佳路径

2、OSPF特点

  • 开放性(Open): OSPF是一种开放标准,允许不同厂商的设备实现和互操作。
  • 链路状态(Link State): OSPF基于链路状态算法,维护每个节点对网络拓扑的全局视图。
  • 分层设计(Hierarchical Design): OSPF使用区域(Area)和自治系统(AS)的层次结构,提高了网络的可扩展性和管理性。
  • 快速收敛(Fast Convergence): OSPF通过及时更新链路状态信息和计算最短路径,实现快速的路由收敛。
  • 支持多种网络类型(Support for Multiple Network Types): OSPF支持多种网络类型,包括广播、点对点、点对多点等。
  • 可扩展性(Scalability): OSPF支持分布式计算和路由聚合,适用于大规模网络。
  • 灵活性(Flexibility): OSPF提供丰富的配置选项和路由策略,满足不同网络环境的需求

3. OSPF工作原理

  • 邻居发现(Neighbor Discovery): OSPF通过Hello报文进行邻居发现,并建立邻居关系。
  • 链路状态更新(Link State Update): OSPF通过LSA(Link State Advertisement)报文交换链路状态信息。
  • 路由计算(Route Calculation): OSPF使用Dijkstra算法计算最短路径,并更新路由表。
  • 路由选择(Route Selection): OSPF根据最短路径选择最佳路由,并进行数据转发。

4. 其他路由的比较

  • OSPF vs. RIP: OSPF是一种链路状态协议,支持快速收敛和分层设计,适用于大型网络;而RIP是一种距离矢量协议,收敛速度慢,适用于小型网络。
  • OSPF vs. EIGRP: OSPF是一种开放标准协议,适用于跨厂商网络;而EIGRP是思科专有协议,只适用于思科设备。
  • OSPF vs. BGP: OSPF是一种内部网关协议(IGP),用于自治系统内部的路由选择;而BGP是一种外部网关协议(EGP),用于自治系统之间的路由选择。

5. OSPF应用场景

  • 企业网络: OSPF常用于企业内部网络中,实现内部路由选择和通信。
  • 互联网服务提供商(ISP)网络: OSPF常用于ISP网络中,实现自治系统内部的路由选择和互联互通。
  • 校园网络和数据中心: OSPF常用于校园网络和数据中心中,实现网络的灵活性和可扩展性。

二、网络设计与区域划分

1. 设计网络拓扑

在设计网络拓扑时,考虑以下因素:

  • 网络规模: 网络规模决定了设计的复杂度和区域划分的必要性。
  • 网络层次结构: 使用分层结构可以简化管理和提高扩展性。
  • 连接方式: 确定网络设备之间的连接方式,如全网状、分布式或集中式。
  • 冗余设计: 考虑冗余路径和设备,以提高网络的可靠性和容错性。

2. 划分OSPF区域

划分OSPF区域有助于提高网络的可管理性和性能。常见的区域划分包括:

  • Backbone Area(骨干区域): 包含所有其他区域的中转区域,通常使用区域号0。
  • Stub Area(Stub区域): 没有外部路由信息,只能通过骨干区域访问其他区域的区域。
  • Totally Stubby Area(全Stub区域): 除了默认路由外,完全没有其他外部路由信息。
  • Not-So-Stubby Area(NSSA,半Stub区域): 允许在区域内引入外部路由,但不允许它们传播到其他Stub区域。
  • 区域间连接(Inter-Area Connection): 确定区域之间的连接方式,如虚拟链路(Virtual Link)或汇总路由(Summary Route)。

3. 设计路由策略

在设计OSPF网络时,需要考虑以下路由策略:

  • 路由汇总(Route Summarization): 在区域边界进行路由汇总,减少路由表的大小和控制路由的数量。
  • 路由过滤(Route Filtering): 在网络边界过滤路由,控制路由的传播和选择。
  • 路由优先级(Route Priority): 确定不同路由之间的优先级,以实现特定流量的优先级传输。
  • 负载均衡(Load Balancing): 使用等价路径或策略路由实现负载均衡,优化网络资源利用率。

4. 实施和测试

在实施OSPF网络设计之前,务必进行充分的测试和验证,确保网络的稳定性和性能。测试包括:

  • 功能测试: 确保OSPF协议的基本功能和配置正确。
  • 性能测试: 测试网络的性能和吞吐量,确保满足预期的性能指标。
  • 容错测试: 模拟设备故障和网络分区情况,测试网络的容错能力。

三、标准区域的特点与配置

1、Stub Area概述

  • 应用场景: Stub Area通常用于大型企业网络或ISP(互联网服务提供商)网络中,用于简化和优化路由信息传播。
  • 区域边界路由器(ABR): 在OSPF网络中,ABR是连接不同区域的路由器。在Stub Area中,ABR负责将来自骨干区域的汇总路由信息传播到该区域,并接收该区域的路由信息传递给骨干区域。
  • 配置要点: 在区域边界路由器上配置Stub Area,并根据需要配置默认路由。在Stub Area中,也可以选择配置全Stub Area以进一步限制外部路由信息的传播。
  • 性能优势: 使用Stub Area可以降低网络的路由表大小和计算负载,从而提高网络的性能和可靠性。同时,通过汇总路由信息和限制外部路由信息的传播,可以更好地控制网络的路由选择和管理。

2、Stub Area的优点

  • 不传递外部路由: Stub Area不会传递来自其他区域的外部路由信息,只接收来自骨干区域的汇总路由信息或默认路由。

  • 接收汇总路由: Stub Area会接收来自骨干区域的汇总路由信息,以减少在该区域内的路由表项数量。

  • 默认路由: 可以在Stub Area中配置默认路由,用于指示所有不在区域内的目的地。

  • 节省网络带宽和资源: 不传递外部路由信息可以节省网络带宽和减少路由表大小,降低路由器的计算负载,提高网络性能。

  • 简化网络配置和管理: Stub Area的配置相对简单,只需要在区域边界路由器上进行相应配置,有助于简化网络配置和管理。

3、Stub Area的配置步骤

  • 区域类型配置
Router(config)# router ospf <process-id>
Router(config-router)# area <area-id> stub
  • LSA类型配置
    • 在Stub Area中,LSA(链路状态通告)类型的配置通常由OSPF协议自动处理。Stub Area会自动阻止外部LSA类型的传播,只接收来自骨干区域的摘要LSA
  • 链路状态汇总配置

Stub Area会接收来自骨干区域的汇总路由信息。通常,这个过程是自动的,不需要额外配置。如果需要手动配置汇总路由,可以在ABR(区域边界路由器)上使用命令summary-address来实现

Router(config)# router ospf <process-id>
Router(config-router)# area <area-id> range <ip-address> <mask> [advertise | not-advertise]
  • 路由过滤配置

在Stub Area中,可以通过配置默认路由来指示所有不在该区域内的目的地,或者通过配置路由过滤来限制特定路由信息的传播

Router(config)# ip route 0.0.0.0 0.0.0.0 <next-hop>
Router(config)# router ospf <process-id>
Router(config-router)# default-information originate
  • 路由过滤配置(可选):
Router(config)# router ospf <process-id>
Router(config-router)# distribute-list <access-list> out <interface>

四、实例演示

1、实验拓扑图

image-20230525105650766

2、路由器1配置

#进入视图
[Huawei]sysname R1
#开启DHCP服务
[R1]dhcp enable
Info: The operation may take a few seconds. Please wait for a moment.done.
#进入端口
[R1]interface GigabitEthernet 0/0/0
#配置IP
[R1-GigabitEthernet0/0/0]ip address 192.168.10.254 24
#开启DHCP
[R1-GigabitEthernet0/0/0]dhcp select interface
#进入端口
[R1-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/1
[R1-GigabitEthernet0/0/1]ip address 172.16.1.1 24
[R1-GigabitEthernet0/0/1]quit
#创建进程
[R1]ospf 10
#进入骨干区域
[R1-ospf-10]area 0
#宣告网段
[R1-ospf-10-area-0.0.0.0]network 192.168.10.0 0.0.0.255
[R1-ospf-10-area-0.0.0.0]network 172.16.1.0 0.0.0.255

3、路由器2配置

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname R2
[R2]interface GigabitEthernet 0/0/0
[R2-GigabitEthernet0/0/0]ip address 172.16.1.2 24
[R2-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/1
[R2-GigabitEthernet0/0/1]ip address 172.16.2.1 24
[R2-GigabitEthernet0/0/1]quit
#创建进程
[R2]ospf 10
#进入骨干区域
[R2-ospf-10]area 0
#宣告网段
[R2-ospf-10-area-0.0.0.0]network 172.16.1.0 0.0.0.255
[R2-ospf-10-area-0.0.0.0]quit
#进入标准区域
[R2-ospf-10]area 1
#宣告网段
[R2-ospf-10-area-0.0.0.1]network 172.16.2.0 0.0.0.255
#开启末梢模式关闭汇总=完全末梢区域
[R2-ospf-10-area-0.0.0.1]stub no-summary

4、路由器3配置

<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname R3
[R3]dhcp enable
[R3]interface GigabitEthernet 0/0/0 
[R3-GigabitEthernet0/0/0]ip address 172.16.2.2 24
[R3-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/1
[R3-GigabitEthernet0/0/1]ip address 192.168.20.254 24
[R3-GigabitEthernet0/0/1]dhcp select interface
[R3-GigabitEthernet0/0/1]quit
#创建进程
[R3]ospf 10
[R3-ospf-10]area 1
#宣告网段
[R3-ospf-10-area-0.0.0.1]network 192.168.20.0 0.0.0.255
[R3-ospf-10-area-0.0.0.1]network 172.16.2.0 0.0.0.255
#开启末梢模式关闭汇总=完全末梢区域
[R3-ospf-10-area-0.0.0.1]stub no-summary

五、案例分析

1、路由表1

<R1>dis ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 12       Routes : 12       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
     172.16.1.0/24  Direct  0    0           D   172.16.1.1      GigabitEthernet
0/0/1
     172.16.1.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
   172.16.1.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
     172.16.2.0/24  OSPF    10   2           D   172.16.1.2      GigabitEthernet
0/0/1
   192.168.10.0/24  Direct  0    0           D   192.168.10.254  GigabitEthernet
0/0/0
 192.168.10.254/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
 192.168.10.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
   192.168.20.0/24  OSPF    10   3           D   172.16.1.2      GigabitEthernet
0/0/1
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

2、路由表2

<R2>dis ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 12       Routes : 12       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
     172.16.1.0/24  Direct  0    0           D   172.16.1.2      GigabitEthernet
0/0/0
     172.16.1.2/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
   172.16.1.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
     172.16.2.0/24  Direct  0    0           D   172.16.2.1      GigabitEthernet
0/0/1
     172.16.2.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
   172.16.2.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
   192.168.10.0/24  OSPF    10   2           D   172.16.1.1      GigabitEthernet
0/0/0
   192.168.20.0/24  OSPF    10   2           D   172.16.2.2      GigabitEthernet
0/0/1
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

3、路由表3

<R3>dis ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 11       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface
# 这条因为不去学习其他区域的路由,所以直接生成了一条默认路由
        0.0.0.0/0   OSPF    10   2           D   172.16.2.1      GigabitEthernet
0/0/0
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
     172.16.2.0/24  Direct  0    0           D   172.16.2.2      GigabitEthernet
0/0/0
     172.16.2.2/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
   172.16.2.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
   192.168.20.0/24  Direct  0    0           D   192.168.20.254  GigabitEthernet
0/0/1
 192.168.20.254/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
 192.168.20.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

4、实验结果

image-20230525110656651


网站公告

今日签到

点亮在社区的每一天
去签到