物理意义,端点矢量=角速率叉乘本身向量;
负号是动系b看固定系i是相反的;
一个固定
在惯性导航解算中,旋转矢量的叉乘用于描述姿态矩阵的微分方程。你提到的公式中, ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb×表示的是一个向量叉乘的矩阵形式,通常称为叉乘矩阵或反对称矩阵。以下是详细的解释和计算规则:
1. 叉乘矩阵的定义
对于任意三维向量 ω = [ ω x , ω y , ω z ] T \boldsymbol{\omega} = [\omega_x, \omega_y, \omega_z]^T ω=[ωx,ωy,ωz]T,其叉乘矩阵 ω × \boldsymbol{\omega} \times ω×定义为:
ω × = ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \boldsymbol{\omega} \times = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} ω×=
0ωz−ωy−ωz0ωxωy−ωx0
这个矩阵的作用是将向量 ω \boldsymbol{\omega} ω的叉乘运算转化为矩阵乘法运算。对于任意向量 r \boldsymbol{r} r,有:
ω × r = ω × r \boldsymbol{\omega} \times \boldsymbol{r} = \boldsymbol{\omega} \times \boldsymbol{r} ω×r=ω×r
2. 姿态矩阵微分方程的推导
在惯性导航中,姿态矩阵 C b i \boldsymbol{C}_b^i Cbi 表示从载体坐标系( b b b 系)到惯性坐标系( i i i 系)的旋转矩阵。其微分方程为:
C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)
其中:
- ω i b b \boldsymbol{\omega}_{ib}^b ωibb 是载体相对于惯性系的角速度,在载体坐标系( b b b 系)下表示。
- ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 是角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb的叉乘矩阵。
3. 叉乘矩阵的作用
叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 的作用是将角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb的叉乘运算转化为矩阵乘法运算。具体来说:
- 对于任意向量 r b \boldsymbol{r}^b rb,有:
ω i b b × r b = ω i b b × r b \boldsymbol{\omega}_{ib}^b \times \boldsymbol{r}^b = \boldsymbol{\omega}_{ib}^b \times \boldsymbol{r}^b ωibb×rb=ωibb×rb - 对于矩阵 C b i \boldsymbol{C}_b^i Cbi,有:
C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)
4. 具体计算规则
假设角速度向量 ω i b b = [ ω x , ω y , ω z ] T \boldsymbol{\omega}_{ib}^b = [\omega_x, \omega_y, \omega_z]^T ωibb=[ωx,ωy,ωz]T,则其叉乘矩阵为:
ω i b b × = ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \boldsymbol{\omega}_{ib}^b \times = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} ωibb×=
0ωz−ωy−ωz0ωxωy−ωx0
姿态矩阵 C b i \boldsymbol{C}_b^i Cbi的微分方程为:
C ˙ b i = C b i ⋅ ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i \cdot \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} C˙bi=Cbi⋅
0ωz−ωy−ωz0ωxωy−ωx0
具体计算时, C ˙ b i \dot{\boldsymbol{C}}_b^i C˙bi的每一列是 C b i \boldsymbol{C}_b^i Cbi的对应列与叉乘矩阵的乘积。
5. 示例
假设:
ω i b b = ( ω x ω y ω z ) , C b i = ( c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ) \boldsymbol{\omega}_{ib}^b = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}, \quad \boldsymbol{C}_b^i = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} ωibb=
ωxωyωz
,Cbi=
c11c21c31c12c22c32c13c23c33
则:
C ˙ b i = C b i ⋅ ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i \cdot \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} C˙bi=Cbi⋅
0ωz−ωy−ωz0ωxωy−ωx0
计算结果为:
C ˙ b i = ( c 11 ⋅ 0 + c 12 ⋅ ω z + c 13 ⋅ ( − ω y ) c 11 ⋅ ( − ω z ) + c 12 ⋅ 0 + c 13 ⋅ ω x c 11 ⋅ ω y + c 12 ⋅ ( − ω x ) + c 13 ⋅ 0 c 21 ⋅ 0 + c 22 ⋅ ω z + c 23 ⋅ ( − ω y ) c 21 ⋅ ( − ω z ) + c 22 ⋅ 0 + c 23 ⋅ ω x c 21 ⋅ ω y + c 22 ⋅ ( − ω x ) + c 23 ⋅ 0 c 31 ⋅ 0 + c 32 ⋅ ω z + c 33 ⋅ ( − ω y ) c 31 ⋅ ( − ω z ) + c 32 ⋅ 0 + c 33 ⋅ ω x c 31 ⋅ ω y + c 32 ⋅ ( − ω x ) + c 33 ⋅ 0 ) \dot{\boldsymbol{C}}_b^i = \begin{pmatrix} c_{11} \cdot 0 + c_{12} \cdot \omega_z + c_{13} \cdot (-\omega_y) & c_{11} \cdot (-\omega_z) + c_{12} \cdot 0 + c_{13} \cdot \omega_x & c_{11} \cdot \omega_y + c_{12} \cdot (-\omega_x) + c_{13} \cdot 0 \\ c_{21} \cdot 0 + c_{22} \cdot \omega_z + c_{23} \cdot (-\omega_y) & c_{21} \cdot (-\omega_z) + c_{22} \cdot 0 + c_{23} \cdot \omega_x & c_{21} \cdot \omega_y + c_{22} \cdot (-\omega_x) + c_{23} \cdot 0 \\ c_{31} \cdot 0 + c_{32} \cdot \omega_z + c_{33} \cdot (-\omega_y) & c_{31} \cdot (-\omega_z) + c_{32} \cdot 0 + c_{33} \cdot \omega_x & c_{31} \cdot \omega_y + c_{32} \cdot (-\omega_x) + c_{33} \cdot 0 \end{pmatrix} C˙bi=
c11⋅0+c12⋅ωz+c13⋅(−ωy)c21⋅0+c22⋅ωz+c23⋅(−ωy)c31⋅0+c32⋅ωz+c33⋅(−ωy)c11⋅(−ωz)+c12⋅0+c13⋅ωxc21⋅(−ωz)+c22⋅0+c23⋅ωxc31⋅(−ωz)+c32⋅0+c33⋅ωxc11⋅ωy+c12⋅(−ωx)+c13⋅0c21⋅ωy+c22⋅(−ωx)+c23⋅0c31⋅ωy+c32⋅(−ωx)+c33⋅0
6. 物理意义
- 叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 描述了载体坐标系相对于惯性坐标系的旋转速率。
- 姿态矩阵微分方程 C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)描述了姿态矩阵随时间的变化率。
总结
在惯性导航解算中,叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb×是将角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb 的叉乘运算转化为矩阵乘法运算的工具。通过姿态矩阵微分方程,可以实时更新姿态矩阵 C b i \boldsymbol{C}_b^i Cbi,从而解算载体的姿态变化。