Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection
基于风车形卷积和尺度动态损失的红外小目标检测
风车形卷积(PConv)模块:
作者提出了一种新颖的风车形卷积(PConv)模块,用于替代标准卷积。该模块更好地符合红外小目标(IRST)的高斯空间分布特性,增强了底层特征提取能力,并显著扩展了感受野,同时仅引入了极少的参数增加。
效果图
代码
import torch
import torch.nn as nn
import torch.nn.functional as F
"""风车型卷积,使用了padding再各个方向上实现方向敏感性,增加了参数量"""
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class PConv(nn.Module):
''' Pinwheel-shaped Convolution using the Asymmetric Padding method. '''
def __init__(self, c1, c2, k, s):
super().__init__()
# self.k = k
p = [(k, 0, 1, 0), (0, k, 0, 1), (0, 1, k, 0), (1, 0, 0, k)]
self.pad = [nn.ZeroPad2d(padding=(p[g])) for g in range(4)]
self.cw = Conv(c1, c2 // 4, (1, k), s=s, p=0)
self.ch = Conv(c1, c2 // 4, (k, 1), s=s, p=0)
self.cat = Conv(c2, c2, 2, s=1, p=0)
def forward(self, x):
yw0 = self.cw(self.pad[0](x))
yw1 = self.cw(self.pad[1](x))
yh0 = self.ch(self.pad[2](x))
yh1 = self.ch(self.pad[3](x))
return self.cat(torch.cat([yw0, yw1, yh0, yh1], dim=1))
if __name__ == "__main__":
x = torch.randn(1, 32, 64, 64).cuda()
xm = torch.randn(1, 1, 320, 320).cuda()
model = PConv(c1=32,c2=32,k=3,s=1).cuda()
#model = Conv(c1=32, c2=32, k=3, s=1).cuda()
y = model(x)
print(y.size())
print("最大内存占用:", torch.cuda.max_memory_allocated() // 1024 // 1024, "MB")
# | 模块 | 参数量 | FLOPs | 特征提取能力 |
# |--------|--------|---------|--------------------|
# | Conv | 3.7K | 2.4G | 各向同性特征 |
# | PConv | 25.6K | 3.2G | 方向敏感特征 |