引言
在使用 PyTorch 进行深度学习开发时,CUDA 版本兼容性问题是个老生常谈的话题。本文将通过一次真实的排查过程,剖析 PyTorch 虚拟环境自带 CUDA 运行时库与系统全局 CUDA 环境冲突的场景,并一步步分析问题、定位原因,并最终给出解决方案。
问题复现:ImportError: undefined symbol
始于一个看似简单的 import torch
语句
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ python
Python 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> Traceback (most recent call last):
>>> File "<stdin>", line 1, in <module>
>>> File "/home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/torch/__init__.py", line 367, in <module>
>>> from torch._C import * # noqa: F403
>>> ^^^^^^^^^^^^^^^^^^^^^^
>>> ImportError: /home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/torch/lib/../../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12
错误信息很明确,在 libcusparse.so.12
中找不到符号 __nvJitLinkComplete_12_4
,这通常意味着存在版本不匹配的问题。
初步排查:环境 & CUDA 版本
首先,我们检查一下环境和 CUDA 版本
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ echo $LD_LIBRARY_PATH
/usr/local/cuda/lib64:
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Wed_Nov_22_10:17:15_PST_2023
Cuda compilation tools, release 12.3, V12.3.107
Build cuda_12.3.r12.3/compiler.33567101_0
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ uv pip list | grep nvidia
Using Python 3.12.9 environment at: /home/wangh/codes/ModelForger/.venv
nvidia-cublas-cu12 12.4.5.8
nvidia-cuda-cupti-cu12 12.4.127
nvidia-cuda-nvrtc-cu12 12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12 9.1.0.70
nvidia-cufft-cu12 11.2.1.3
nvidia-curand-cu12 10.3.5.147
nvidia-cusolver-cu12 11.6.1.9
nvidia-cusparse-cu12 12.3.1.170
nvidia-nccl-cu12 2.21.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu12 12.4.127
发现了两个关键信息
nvcc --version
系统安装的 CUDA 版本是 12.3。nvidia-*
虚拟环境安装的 nvjitlink 版本号为 12.4.127。
根据错误信息可知,PyTorch 虚拟环境中的动态库 libcusparse.so.12
需要的正是 libnvJitLink.so.12
的 __nvJitLinkComplete_12_4
版本,pip
安装的依赖包版本自身没有问题,因此推测可能错误链接到了系统中 CUDA 12.3 的 libnvJitLink.so.12
。
分析:动态链接库加载路径
为了验证猜想,我们使用 patchelf
和 ldd
命令查看 libcusparse.so.12
的动态链接状态:
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ patchelf --print-rpath libcusparse.so.12
$ORIGIN:$ORIGIN/../../nvjitlink/lib
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ ldd libcusparse.so.12
linux-vdso.so.1 (0x00007ffc507e2000)
libnvJitLink.so.12 => /usr/local/cuda/lib64/libnvJitLink.so.12 (0x00007f867a399000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f867a353000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f867a349000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f867a343000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f867a1f4000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f867a1d7000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8679fe5000)
/lib64/ld-linux-x86-64.so.2 (0x00007f868e62d000)
果不其然 libcusparse.so.12
依赖的 libnvJitLink.so.12
被加载到了系统 CUDA 目录 (/usr/local/cuda/lib64
) 下,而不是预定义的 PyTorch 虚拟环境的目录。
问题根源:LD_LIBRARY_PATH
优先级
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ echo $LD_LIBRARY_PATH
/usr/local/cuda/lib64:
至此,问题根源已经明确:LD_LIBRARY_PATH
环境变量导致系统 CUDA 库路径优先于 PyTorch 虚拟环境的 CUDA 库路径被加载。这导致了版本不匹配,PyTorch 无法找到所需的符号。
解决方案:unset LD_LIBRARY_PATH
解决这个问题最直接的方法就是移除 LD_LIBRARY_PATH
对系统 CUDA 路径的设置:
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ unset LD_LIBRARY_PATH
再次查看 libcusparse.so.12
的动态链接:
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ ldd libcusparse.so.12
linux-vdso.so.1 (0x00007fff959a7000)
libnvJitLink.so.12 => /home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib/./../../nvjitlink/lib/libnvJitLink.so.12 (0x00007f303000e000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f302ffc8000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f302ffbe000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f302ffb8000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f302fe69000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f302fe4c000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f302fc5a000)
/lib64/ld-linux-x86-64.so.2 (0x00007f30443f9000)
现在,libnvJitLink.so.12
正确地加载到了 PyTorch 虚拟环境的目录下。
验证:问题解决
(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ python
Python 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
import torch
成功!问题解决。
最佳实践与总结
- 避免全局设置
LD_LIBRARY_PATH
: 在全局环境变量(如.bashrc
或.bash_profile
)中设置LD_LIBRARY_PATH
会干扰虚拟环境的独立性。 - 理解动态链接机制: 了解
LD_LIBRARY_PATH
的作用以及动态链接库的加载顺序,有助于快速定位和解决类似问题。