A-LOAM工程笔记(二):前端点云预处理及特征提取

发布于:2025-03-08 ⋅ 阅读:(78) ⋅ 点赞:(0)

一、前言

LOAM算法前端主要包含对lidar 点云的预处理及点线特征和点面特征的提取。这些功能实现在scanRegistration.cpp中。

二、主要流程

int main(int argc, char **argv)
{
    ros::init(argc, argv, "scanRegistration");
    ros::NodeHandle nh;
 
    nh.param<int>("scan_line", N_SCANS, 16);
 
    nh.param<double>("minimum_range", MINIMUM_RANGE, 0.1);
 
    printf("scan line number %d \n", N_SCANS);
 
    if(N_SCANS != 16 && N_SCANS != 32 && N_SCANS != 64)
    {
        printf("only support velodyne with 16, 32 or 64 scan line!");
        return 0;
    }
 
    ros::Subscriber subLaserCloud = nh.subscribe<sensor_msgs::PointCloud2>("/velodyne_points", 100, laserCloudHandler);
 
    pubLaserCloud = nh.advertise<sensor_msgs::PointCloud2>("/velodyne_cloud_2", 100);
 
    pubCornerPointsSharp = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_sharp", 100);
 
    pubCornerPointsLessSharp = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_less_sharp", 100);
 
    pubSurfPointsFlat = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_flat", 100);
 
    pubSurfPointsLessFlat = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_less_flat", 100);
 
    pubRemovePoints = nh.advertise<sensor_msgs::PointCloud2>("/laser_remove_points", 100);
 
    if(PUB_EACH_LINE)
    {
        for(int i = 0; i < N_SCANS; i++)
        {
            ros::Publisher tmp = nh.advertise<sensor_msgs::PointCloud2>("/laser_scanid_" + std::to_string(i), 100);
            pubEachScan.push_back(tmp);
        }
    }
    ros::spin();
 
    return 0;
}

主要流程包含:

(1)ros节点和句柄初始化,雷达线数"scan_line"和盲区"minimum_range"两个参数的设置,分别设置为16线和0.1m。

(2) 订阅topic"/velodyne_points",绑定回调函数laserCloudHandler(重要),对接收到的点云进行处理。

(3)pubLaserCloud发布原始点云;pubCornerPointsSharp发布曲率大的角点点云;pubCornerPointsLessSharp发布曲率小一些的角点点云;pubSurfPointsFlat发布面点点云;pubSurfPointsLessFlat发布曲率更小面点点云;pubRemovePoints发布移除的点云。

(4)若PUB_EACH_LINE设置的是true,根据laser_scanid发布不同id的点云。

三、点云预处理

1)removeClosedPointCloud():

template <typename PointT>
void removeClosedPointCloud(const pcl::PointCloud<PointT> &cloud_in,
                              pcl::PointCloud<PointT> &cloud_out, float thres)
{
    if (&cloud_in != &cloud_out)
    {
        cloud_out.header = cloud_in.header;
        cloud_out.points.resize(cloud_in.points.size());
    }
 
    size_t j = 0;
 
    for (size_t i = 0; i < cloud_in.points.size(); ++i)
    {
        if (cloud_in.points[i].x * cloud_in.points[i].x + cloud_in.points[i].y * cloud_in.points[i].y + 
           cloud_in.points[i].z * cloud_in.points[i].z < thres * thres)
            continue;
        cloud_out.points[j] = cloud_in.points[i];
        j++;
    }
    if (j != cloud_in.points.size())
    {
        cloud_out.points.resize(j);
    }
 
    cloud_out.height = 1;
    cloud_out.width = static_cast<uint32_t>(j);
    cloud_out.is_dense = true;
}

根据设置的参数thres,剔除小于这个距离内过于靠近的点云. 设置点云宽度(当前束激光保留点云个数),高度1(拆分成了单束),is_dense = true。

2)laserCloudHandler():

void laserCloudHandler(const sensor_msgs::PointCloud2ConstPtr &laserCloudMsg)
{
    if (!systemInited)
    { 
        systemInitCount++;
        if (systemInitCount >= systemDelay)
        {
            systemInited = true;
        }
        else
            return;
    }

    TicToc t_whole;
    TicToc t_prepare;
    std::vector<int> scanStartInd(N_SCANS, 0);
    std::vector<int> scanEndInd(N_SCANS, 0);

    pcl::PointCloud<pcl::PointXYZ> laserCloudIn;
    pcl::fromROSMsg(*laserCloudMsg, laserCloudIn);
    std::vector<int> indices;

    // ���ȶԵ����˲���ȥ��NaNֵ����Ч���ƣ��Լ���Lidar����ϵԭ��MINIMUM_RANGE�������ڵĵ�
    pcl::removeNaNFromPointCloud(laserCloudIn, laserCloudIn, indices);
    removeClosedPointCloud(laserCloudIn, laserCloudIn, MINIMUM_RANGE);


    int cloudSize = laserCloudIn.points.size();
    float startOri = -atan2(laserCloudIn.points[0].y, laserCloudIn.points[0].x);
    float endOri = -atan2(laserCloudIn.points[cloudSize - 1].y,
                          laserCloudIn.points[cloudSize - 1].x) +
                   2 * M_PI;

    if (endOri - startOri > 3 * M_PI)
    {
        endOri -= 2 * M_PI;
    }
    else if (endOri - startOri < M_PI)
    {
        endOri += 2 * M_PI;
    }
    //printf("end Ori %f\n", endOri);

    bool halfPassed = false;
    int count = cloudSize;
    PointType point;
    std::vector<pcl::PointCloud<PointType>> laserCloudScans(N_SCANS);
    for (int i = 0; i < cloudSize; i++)
    {
        point.x = laserCloudIn.points[i].x;
        point.y = laserCloudIn.points[i].y;
        point.z = laserCloudIn.points[i].z;

        float angle = atan(point.z / sqrt(point.x * point.x + point.y * point.y)) * 180 / M_PI;
        int scanID = 0;

        if (N_SCANS == 16)
        {
            scanID = int((angle + 15) / 2 + 0.5);
            if (scanID > (N_SCANS - 1) || scanID < 0)
            {
                count--;
                continue;
            }
        }
        else if (N_SCANS == 32)
        {
            scanID = int((angle + 92.0/3.0) * 3.0 / 4.0);
            if (scanID > (N_SCANS - 1) || scanID < 0)
            {
                count--;
                continue;
            }
        }
        else if (N_SCANS == 64)
        {   
            if (angle >= -8.83)
                scanID = int((2 - angle) * 3.0 + 0.5);
            else
                scanID = N_SCANS / 2 + int((-8.83 - angle) * 2.0 + 0.5);

            // use [0 50]  > 50 remove outlies 
            if (angle > 2 || angle < -24.33 || scanID > 50 || scanID < 0)
            {
                count--;
                continue;
            }
        }
        else
        {
            printf("wrong scan number\n");
            ROS_BREAK();
        }
        //printf("angle %f scanID %d \n

网站公告

今日签到

点亮在社区的每一天
去签到