文章目录
在 Go 语言中,container/list
包提供了一个双向链表的实现。链表是一种常见的数据结构,适用于频繁插入和删除操作的场景。container/list
包中的链表是双向的,意味着每个元素都包含指向前一个和后一个元素的指针。
力扣:146. LRU 缓存
力扣算法链接:https://leetcode.cn/problems/lru-cache/?envType=study-plan-v2&envId=top-100-liked
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存。
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
代码案例:
type Node struct {
key int
value int
}
type LRUCache struct {
capacity int
list *list.List
mp map[int]*list.Element
}
func Constructor(capacity int) LRUCache {
return LRUCache{
capacity: capacity,
list: list.New(),
mp: make(map[int]*list.Element),
}
}
func (this *LRUCache) Get(key int) int {
if v, ok := this.mp[key]; ok {
this.list.MoveToFront(v)
return v.Value.(*Node).value
}
return -1
}
func (this *LRUCache) Put(key int, value int) {
if v, ok := this.mp[key]; ok {
v.Value.(*Node).value = value
this.list.MoveToFront(v)
return
}
node := &Node{key, value}
a := this.list.PushFront(node)
this.mp[key] = a
if this.list.Len() > this.capacity {
tmp := this.list.Back()
delete(this.mp, tmp.Value.(*Node).key)
this.list.Remove(tmp)
}
}
主要结构 List 和 Element
- List: 表示一个双向链表。
type List struct {
root Element // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
- Element: 表示链表中的一个元素。
type Element struct {
next, prev *Element
list *List
Value any
}
常用方法
1. 初始化链表
使用 list.New()
创建一个新的链表。
func main() {
l := list.New()
fmt.Printf("%+v\n",l)
}
2. 插入元素
- PushBack(value interface{}) *Element: 在链表尾部插入一个元素。
- PushFront(value interface{}) *Element: 在链表头部插入一个元素。
- InsertBefore(value interface{}, mark *Element) *Element: 在指定元素前插入一个元素。
- InsertAfter(value interface{}, mark *Element) *Element: 在指定元素后插入一个元素。
func main() {
l := list.New()
l.PushBack(123)
l.PushBack("nihao")
l.PushFront("你好")
l.PushFront(3.1415926)
// 遍历
for e := l.Front(); e != nil; e = e.Next() {
fmt.Printf("%+v\n", e)
}
}
通过运行结果可以发现,list其实就是一个环形的双向链表。
3. 删除元素
- Remove(e *Element) interface{}: 删除链表中的指定元素。
func main() {
l := list.New()
l.PushBack("nihao")
a:=l.Remove(l.Back())
fmt.Println(a)
}
4. 遍历链表
- Front() *Element: 返回链表的第一个元素。
- Back() *Element: 返回链表的最后一个元素。
- Next() *Element: 返回当前元素的下一个元素。
- Prev() *Element: 返回当前元素的前一个元素。
func main() {
l := list.New()
l.PushBack(1)
l.PushBack(2)
l.PushBack(3)
// 从前往后遍历
for e := l.Front(); e != nil; e = e.Next() {
fmt.Println(e.Value)
}
// 从后往前遍历
for e := l.Back(); e != nil; e = e.Prev() {
fmt.Println(e.Value)
}
}
5. 获取链表长度
- Len() int: 返回链表中元素的个数。
func main() {
l := list.New()
l.PushBack(1)
l.PushBack(2)
l.PushBack(3)
fmt.Println(l.Len()) // 输出: 3
}
使用场景
- 频繁插入和删除: 链表在插入和删除操作上比数组更高效,尤其是在中间位置。
- 实现队列和栈: 链表可以用来实现队列(FIFO)和栈(LIFO)等数据结构。
- 动态数据存储: 当数据量不确定或需要动态调整时,链表是一个很好的选择。
注意事项
- 内存开销: 链表的每个元素都需要额外的内存来存储前后指针,因此内存开销比数组大。
- 随机访问性能差: 链表不支持随机访问,访问某个元素需要从头或尾开始遍历。
源代码阅读
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package list implements a doubly linked list.
//
// To iterate over a list (where l is a *List):
//
// for e := l.Front(); e != nil; e = e.Next() {
// // do something with e.Value
// }
package list
// Element is an element of a linked list.
type Element struct {
//双链表元素中的下一个和上一个指针。
//为了简化实现,在内部实现了列表l
//作为一个环,这样&l.root既是最后一个元素的下一个元素
//list元素(l.Back())和第一个列表的前一个元素
//元素(l.Front())。
next, prev *Element
// The list to which this element belongs.
list *List
// The value stored with this element.
Value any
}
// Next returns the next list element or nil.
func (e *Element) Next() *Element {
if p := e.next; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// Prev returns the previous list element or nil.
func (e *Element) Prev() *Element {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
root Element // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// Init initializes or clears list l.
func (l *List) Init() *List {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// New returns an initialized list.
func New() *List { return new(List).Init() }
// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List) Len() int { return l.len }
// Front returns the first element of list l or nil if the list is empty.
func (l *List) Front() *Element {
if l.len == 0 {
return nil
}
return l.root.next
}
// Back returns the last element of list l or nil if the list is empty.
func (l *List) Back() *Element {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *List) lazyInit() {
if l.root.next == nil {
l.Init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *List) insert(e, at *Element) *Element {
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *List) insertValue(v any, at *Element) *Element {
return l.insert(&Element{Value: v}, at)
}
// remove removes e from its list, decrements l.len
func (l *List) remove(e *Element) {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
}
// move moves e to next to at.
func (l *List) move(e, at *Element) {
if e == at {
return
}
e.prev.next = e.next
e.next.prev = e.prev
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
}
// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List) Remove(e *Element) any {
if e.list == l {
// if e.list == l, l must have been initialized when e was inserted
// in l or l == nil (e is a zero Element) and l.remove will crash
l.remove(e)
}
return e.Value
}
// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List) PushFront(v any) *Element {
l.lazyInit()
return l.insertValue(v, &l.root)
}
// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List) PushBack(v any) *Element {
l.lazyInit()
return l.insertValue(v, l.root.prev)
}
// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertBefore(v any, mark *Element) *Element {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark.prev)
}
// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertAfter(v any, mark *Element) *Element {
if mark.list != l {
return nil
}
// see comment in List.Remove about initialization of l
return l.insertValue(v, mark)
}
// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToFront(e *Element) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.move(e, &l.root)
}
// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToBack(e *Element) {
if e.list != l || l.root.prev == e {
return
}
// see comment in List.Remove about initialization of l
l.move(e, l.root.prev)
}
// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveBefore(e, mark *Element) {
if e.list != l || e == mark || mark.list != l {
return
}
l.move(e, mark.prev)
}
// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveAfter(e, mark *Element) {
if e.list != l || e == mark || mark.list != l {
return
}
l.move(e, mark)
}
// PushBackList inserts a copy of another list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
l.lazyInit()
for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
l.insertValue(e.Value, l.root.prev)
}
}
// PushFrontList inserts a copy of another list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushFrontList(other *List) {
l.lazyInit()
for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
l.insertValue(e.Value, &l.root)
}
}