引入Hadoop依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.9.2</version>
</dependency>
MyMapper.java
package com.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException, IOException {
String line = value.toString();
int temperature = Integer.parseInt(line.substring(14, 19).trim());
if (temperature != -9999) {
FileSplit failsplit = (FileSplit) context.getInputSplit();
String id = failsplit.getPath().getName().substring(5, 10);
//输出气象站id
context.write(new Text(id), new IntWritable(temperature));
}
}
}
MyReducer.java
package com.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable sean = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
throws IOException, InterruptedException, IOException {
int sum = 0;
int count = 0;
for (IntWritable val : values) {
sum += val.get();
count++;
}
//求平均值气温
sean.set(sum / count);
context.write(key, sean);
}
}
MyDriver.java
package com.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import java.io.IOException;
public class MyDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "WeatherAnalysis");
job.setJarByClass(MyDriver.class);
//输入输出路径
FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
//输入输出格式
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
//设置mapper及map输出的key value类型
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//设置Reducer及reduce输出key value类型
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.waitForCompletion(true);
}
}
jar打包
终端输入:
mvn clean package
进入虚拟机
1.开启集群:
2.
hadoop fs -mkdir /weather
3.上传数据源
4.hdfs dfs -put 上传的目录地址/* /weather
4运行任务
yarn jar jar包地址 com.xxx.主类 /weather /out
/out:不存在的文件夹。
5.查看结果
hadoop fs -cat /out/part*