深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现

发布于:2025-03-14 ⋅ 阅读:(21) ⋅ 点赞:(0)

前言

  • 如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起
  • 本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;
  • CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch): https://blog.csdn.net/weixin_74085818/article/details/146102290?spm=1001.2014.3001.5501
  • 欢迎收藏 + 关注,本人将会持续更新

1、导入数据

1、导入库

import torch  
import torch.nn as nn
import torchvision 
import numpy as np 
import os, PIL, pathlib 
from collections import OrderedDict
import re
from torch.hub import load_state_dict_from_url

# 设置设备
device = "cuda" if torch.cuda.is_available() else "cpu"

device 
'cuda'

2、查看数据信息和导入数据

data_dir = "./data/"

data_dir = pathlib.Path(data_dir)

# 类别数量
classnames = [str(path).split("\\")[0] for path in os.listdir(data_dir)]

classnames
['0', '1']

3、展示数据

import matplotlib.pylab as plt  
from PIL import Image 

# 获取文件名称
data_path_name = "./data/0/"  # 不患病的
data_path_list = [f for f in os.listdir(data_path_name) if f.endswith(('jpg', 'png'))]

# 创建画板
fig, axes = plt.subplots(2, 8, figsize=(16, 6))

for ax, img_file in zip(axes.flat, data_path_list):
    path_name = os.path.join(data_path_name, img_file)
    img = Image.open(path_name) # 打开
    # 显示
    ax.imshow(img)
    ax.axis('off')
    
plt.show()


在这里插入图片描述

4、数据导入

from torchvision import transforms, datasets 

# 数据统一格式
img_height = 224
img_width = 224 

data_tranforms = transforms.Compose([
    transforms.Resize([img_height, img_width]),
    transforms.ToTensor(),
    transforms.Normalize(   # 归一化
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225] 
    )
])

# 加载所有数据
total_data = datasets.ImageFolder(root="./data/", transform=data_tranforms)

5、数据划分

# 大小 8 : 2
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size 

train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])

6、动态加载数据

batch_size = 64

train_dl = torch.utils.data.DataLoader(
    train_data,
    batch_size=batch_size,
    shuffle=True
)

test_dl = torch.utils.data.DataLoader(
    test_data,
    batch_size=batch_size,
    shuffle=False
)
# 查看数据维度
for data, labels in train_dl:
    print("data shape[N, C, H, W]: ", data.shape)
    print("labels: ", labels)
    break
data shape[N, C, H, W]:  torch.Size([64, 3, 224, 224])
labels:  tensor([1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
        1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
        1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1])

2、构建DenseNet121网络

import torch.nn.functional as F

# 实现DenseBlock中的部件:DenseLayer
'''  
1、BN + ReLU: 处理部分,首先进行归一化,然后在用激活函数ReLU
2、Bottlenck Layer:称为瓶颈层,这个层在yolov5中常用,但是yolov5中主要用于特征提取+维度降维,这里采用1 * 1卷积核 + 3 * 3的卷积核进行卷积操作,目的:减少输入输入特征维度
3、BN + ReLU:对 瓶颈层 数据进行归一化,ReLU激活函数,归一化可以确保梯度下降的时候较为平稳
4、3 * 3 生成新的特征图
'''
class _DenseLayer(nn.Sequential):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        '''  
        num_input_features: 输入特征数,也就是通道数,在DenseNet中,每一层都会接受之前层的输出作为输入,故,这个数值通常会随着网络深度增加而增加
        growth_rate: 增长率,这个是 DenseNet的核心概念,决定了每一层为全局状态贡献的特征数量,他的用处主要在于决定了中间瓶颈层的输出通道,需要结合代码去研究
        bn_size: 瓶颈层中输出通道大小,含义:在使用1 * 1卷积核去提取特征数时,目标通道需要扩展到growth_rate的多少倍倍数, bn_size * growth_rate(输出维度)
        drop_rate: 使用Dropout的参数
        '''
        super(_DenseLayer, self).__init__()
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        # 输出维度: bn_size * growth_rate, 1 * 1卷积核,步伐为1,只起到特征提取作用
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, stride=1, kernel_size=1, bias=False))
        
        self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        # 输出通道:growth_rate, 维度计算:不变
        self.add_module("conv2", nn.Conv2d(bn_size * growth_rate, growth_rate, stride=1, kernel_size=3, padding=1, bias=False))
        
        self.drop_rate = drop_rate
        
    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)  # 传播
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)  # self.training 继承nn.Sequential,是否训练模式
        # 模型融合,即,特征通道融合,形成新的特征图
        return torch.cat([x, new_features], dim=1)  # (N, C, H, W)  # 即 C1 + C2,通道上融合
    
'''  
DenseNet网络核心由DenseBlock模块组成,DenseBlock网络由DenseLayer组成,从 DenseLayer 可以看出,DenseBlock是
    密集连接,每一层的输入不仅包含前一层的输出,还包含网络中所有之前层的输出
'''
# 构建DenseBlock模块, 通过上图
class _DenseBlock(nn.Sequential):
    # num_layers 几层DenseLayer模块
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module("denselayer%d" % (i + 1), layer)
    
 
 
 # Transition层,用于维度压缩
 # 组成:一个卷积层 + 一个池化层
class _Transition(nn.Sequential):
    def __init__(self, num_init_features, num_out_features):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(num_init_features))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_init_features, num_out_features, kernel_size=1, stride=1, bias=False))
        # 降维
        self.add_module("pool", nn.AvgPool2d(2, stride=2))

         
# 搭建DenseNet网络
class DenseNet(nn.Module):
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, 
                 compression_rate=0.5, drop_rate=0.5, num_classes=1000):
        '''  
        growth_rate、num_init_features、num_init_features、drop_rate 和denselayer一样
        block_config : 参数在 DenseNet 架构中用于指定每个 Dense Block 中包含的层数, 如:
                DenseNet-121: block_config=(6, 12, 24, 16) 表示第一个 Dense Block 包含 6 层,第二个包含 12 层,第三个包含 24 层,第四个包含 16 层。
                DenseNet-169: block_config=(6, 12, 32, 32)
                DenseNet-201: block_config=(6, 12, 48, 32)
                DenseNet-264: block_config=(6, 12, 64, 48)
        compression_rate: 压缩维度, DenseNet 中用于 Transition Layer(过渡层)的一个重要参数,它控制了从一个 Dense Block 到下一个 Dense Block 之间特征维度的压缩程度
        '''
        super(DenseNet, self).__init__()
        # 第一层卷积
        # OrderedDict,让模型层有序排列
        self.features = nn.Sequential(OrderedDict([
            # 输出维度:((w - k + 2 * p) / s) + 1
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))  # 降维
        ]))
        
        # 搭建DenseBlock层
        num_features = num_init_features
        # num_layers: 层数
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            # nn.Module 中features封装了nn.Sequential
            self.features.add_module("denseblock%d" % (i + 1), block)
            '''  
            # 这个计算反映了 DenseNet 中的一个关键特性:每一层输出的特征图(即新增加的通道数)由 growth_rate 决定,
            # 并且这些新生成的特征图会被传递给该 Dense Block 中的所有后续层以及下一个 Dense Block。
            '''
            num_features += num_layers * growth_rate  # 叠加,每一次叠加
            
            # 判断是否需要使用Transition层
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features*compression_rate)) # compression_rate 作用
                self.features.add_module("transition%d" % (i + 1), transition)
                num_features = int(num_features*compression_rate)  # 更新维度
        
        
        # 最后一层
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))
        
        # 分类层         
        self.classifier = nn.Linear(num_features, num_classes)
        
        # params initialization         
        for m in self.modules():             
            if isinstance(m, nn.Conv2d):         
                '''
                如果当前模块是一个二维卷积层 (nn.Conv2d),那么它的权重 (m.weight) 将通过 Kaiming 正态分布 (kaiming_normal_) 进行初始化。
                这种初始化方式特别适合与ReLU激活函数一起使用,有助于缓解深度网络中的梯度消失问题,促进有效的训练。  
                '''       
                nn.init.kaiming_normal_(m.weight)             
            elif isinstance(m, nn.BatchNorm2d):      
                '''  
                对于二维批归一化层 (nn.BatchNorm2d),偏置项 (m.bias) 被初始化为0,而尺度因子 (m.weight) 被初始化为1。
                这意味着在没有数据经过的情况下,批归一化层不会对输入进行额外的缩放或偏移,保持输入不变。
                '''           
                nn.init.constant_(m.bias, 0)                 
                nn.init.constant_(m.weight, 1)             
            elif isinstance(m, nn.Linear):        
                '''  
                对于全连接层 (nn.Linear),只对其偏置项 (m.bias) 进行了初始化,设置为0'''         
                nn.init.constant_(m.bias, 0)
                
    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(x.size(0), -1)
        out = self.classifier(out)
        return out

model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 12, 16))

model.to(device)
DenseNet(
  (features): Sequential(
    (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu0): ReLU(inplace=True)
    (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (denseblock1): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition1): _Transition(
      (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock2): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition2): _Transition(
      (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock3): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (transition3): _Transition(
      (norm): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock4): _DenseBlock(
      (denselayer1): _DenseLayer(
        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer2): _DenseLayer(
        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer3): _DenseLayer(
        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer4): _DenseLayer(
        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer5): _DenseLayer(
        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer6): _DenseLayer(
        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer7): _DenseLayer(
        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer8): _DenseLayer(
        (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer9): _DenseLayer(
        (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer10): _DenseLayer(
        (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer11): _DenseLayer(
        (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer12): _DenseLayer(
        (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer13): _DenseLayer(
        (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer14): _DenseLayer(
        (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer15): _DenseLayer(
        (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
      (denselayer16): _DenseLayer(
        (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      )
    )
    (norm5): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu5): ReLU(inplace=True)
  )
  (classifier): Linear(in_features=832, out_features=1000, bias=True)
)

3、模型训练

1、构建训练集

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    batch_size = len(dataloader)
    
    train_acc, train_loss = 0, 0 
    
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        
        # 训练
        pred = model(X)
        loss = loss_fn(pred, y)
        
        # 梯度下降法
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 记录
        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        
    train_acc /= size
    train_loss /= batch_size
    
    return train_acc, train_loss

2、构建测试集

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    batch_size = len(dataloader)
    
    test_acc, test_loss = 0, 0 
    
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
        
            pred = model(X)
            loss = loss_fn(pred, y)
        
            test_loss += loss.item()
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        
    test_acc /= size
    test_loss /= batch_size
    
    return test_acc, test_loss

3、设置超参数

loss_fn = nn.CrossEntropyLoss()  # 损失函数     
learn_lr = 1e-4             # 超参数
optimizer = torch.optim.Adam(model.parameters(), lr=learn_lr)   # 优化器

4、模型训练

通过实验发现,还是设置20轮次附件最好

import copy

train_acc = []
train_loss = []
test_acc = []
test_loss = []

epoches = 20

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for i in range(epoches):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

     # 保存最佳模型到 best_model     
    if epoch_test_acc > best_acc:         
        best_acc   = epoch_test_acc         
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率     
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    # 输出
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))

PATH = './best_model.pth'  # 保存的参数文件名 
torch.save(best_model.state_dict(), PATH)

print("Done")
Epoch: 1, Train_acc:79.3%, Train_loss:1.948, Test_acc:84.6%, Test_loss:1.079
Epoch: 2, Train_acc:85.3%, Train_loss:0.395, Test_acc:85.2%, Test_loss:0.721
Epoch: 3, Train_acc:87.3%, Train_loss:0.318, Test_acc:86.5%, Test_loss:0.526
Epoch: 4, Train_acc:89.0%, Train_loss:0.277, Test_acc:86.6%, Test_loss:0.494
Epoch: 5, Train_acc:89.0%, Train_loss:0.266, Test_acc:87.9%, Test_loss:0.400
Epoch: 6, Train_acc:89.6%, Train_loss:0.252, Test_acc:84.6%, Test_loss:0.524
Epoch: 7, Train_acc:90.3%, Train_loss:0.239, Test_acc:85.5%, Test_loss:0.445
Epoch: 8, Train_acc:90.2%, Train_loss:0.235, Test_acc:87.6%, Test_loss:0.359
Epoch: 9, Train_acc:90.0%, Train_loss:0.235, Test_acc:89.3%, Test_loss:0.298
Epoch:10, Train_acc:91.0%, Train_loss:0.220, Test_acc:89.5%, Test_loss:0.307
Epoch:11, Train_acc:90.8%, Train_loss:0.222, Test_acc:88.3%, Test_loss:0.316
Epoch:12, Train_acc:91.4%, Train_loss:0.210, Test_acc:83.3%, Test_loss:0.516
Epoch:13, Train_acc:91.5%, Train_loss:0.208, Test_acc:91.3%, Test_loss:0.247
Epoch:14, Train_acc:91.5%, Train_loss:0.206, Test_acc:90.1%, Test_loss:0.269
Epoch:15, Train_acc:92.0%, Train_loss:0.199, Test_acc:91.1%, Test_loss:0.242
Epoch:16, Train_acc:92.1%, Train_loss:0.194, Test_acc:89.4%, Test_loss:0.285
Epoch:17, Train_acc:92.4%, Train_loss:0.193, Test_acc:91.0%, Test_loss:0.229
Epoch:18, Train_acc:92.4%, Train_loss:0.188, Test_acc:88.0%, Test_loss:0.317
Epoch:19, Train_acc:92.7%, Train_loss:0.182, Test_acc:89.2%, Test_loss:0.285
Epoch:20, Train_acc:92.6%, Train_loss:0.182, Test_acc:78.5%, Test_loss:0.728
Done

5、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息

epochs_range = range(epoches)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training= Loss')
plt.show()


在这里插入图片描述

在20轮测试集准确率变化比较大,从跑的几次实验来看,这次是偶然事件,测试集损失率后面一直稳定在0.3附件,测试准确率一直在0.8、0.89、0.90附件徘徊

6、模型评估

# 将参数加载到model当中 
best_model.load_state_dict(torch.load(PATH, map_location=device)) 
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

print(epoch_test_acc, epoch_test_loss)
0.9134651249533756 0.24670581874393283