1. 量化背景
之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。
我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微调框架对QwQ-32B推理模型进行微调》。关于推理模型吞吐性能对比,可以参考《对比包括QwQ-32B在内的不同推理模型的吞吐量表现》。
2. 量化流程
接下来进入量化介绍:
QwQ-32B的模型架构依然还是Qwen2系列,所以可以使用GPTQ进行量化。之前尝试用AWQ,会报错。下列内容是基于AutoGPTQ实现量化。
首先通过安装源代码的方式获取并安装最新版本的该软件包。
git clone https://github.com/AutoGPTQ/AutoGPTQ
cd AutoGPTQ
pip install -e .
假设基于QwQ-32B
模型进行微调,并将该微调后的模型命名为 QwQ-32B-finetuned
,且使用的是自己的带推理链的数据集。要构建GPTQ量化模型,还需要使用训练数据进行校准。
这里校准数据的设置,最好配置参数damp_percent=0.1,然后我采用的校准样本量是128个sample。不然会报错【1】:
torch._C._LinAlgError: linalg.cholesky: The factorization could not be completed because the input is not positive-definite
在我的场景中,damp_percent我设置0.01,通过调整校准样本量解决了该报错。
我们采用双卡进行量化,脚本如下:
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from transformers import AutoTokenizer
import torch
import json
# 设置路径
model_path = "/data/QwQ-32B-finetuned"
quant_path = "/data/quantized_model"
# 设置量化配置
quantize_config = BaseQuantizeConfig(
bits=4, # 可选择4或8位量化
group_size=128,
damp_percent=0.01,
desc_act=False, # 为了加速推理,可将其设置为False,但可能会导致困惑度稍差
static_groups=False,
sym=True,
true_sequential=True,
model_name_or_path=None,
model_file_base_name="model"
)
max_len = 8192 # 设置最大文本长度
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
# 加载模型,并指定使用GPU 2和GPU 5
model = AutoGPTQForCausalLM.from_pretrained(
model_path,
quantize_config,
max_memory={2: "80GB", 5: "80GB"} # 使用GPU 2和GPU 5,各分配80GB显存
)
# 准备校准数据集
data = []
with open("/data/jz_v0303.jsonl", "r") as f:
for line in f:
msg = json.loads(line)
text = tokenizer.apply_chat_template(msg["messages"], tokenize=False, add_generation_prompt=False)
model_inputs = tokenizer([text])
input_ids = torch.tensor(model_inputs.input_ids[:max_len], dtype=torch.int)
data.append(dict(input_ids=input_ids, attention_mask=input_ids.ne(tokenizer.pad_token_id)))
# 运行量化过程
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
model.quantize(data, cache_examples_on_gpu=False)
# 保存量化后的模型
model.save_quantized(quant_path, use_safetensors=True)
tokenizer.save_pretrained(quant_path)
量化日志:
QwQ有64层transformer层,整个量化共花费约110分钟。
Loading checkpoint shards: 100%|██████████| 14/14 [00:24<00:00, 1.74s/it]
INFO - Start quantizing layer 1/64
INFO - Quantizing self_attn.k_proj in layer 1/64...
2025-03-16 13:08:27 INFO [auto_gptq.quantization.gptq] duration: 4.176503658294678
2025-03-16 13:08:27 INFO [auto_gptq.quantization.gptq] avg loss: 4.942690849304199
INFO - Quantizing self_attn.v_proj in layer 1/64...
2025-03-16 13:08:28 INFO [auto_gptq.quantization.gptq] duration: 1.400636911392212
2025-03-16 13:08:28 INFO [auto_gptq.quantization.gptq] avg loss: 1.4266357421875
INFO - Quantizing self_attn.q_proj in layer 1/64...
2025-03-16 13:08:30 INFO [auto_gptq.quantization.gptq] duration: 1.4035542011260986
2025-03-16 13:08:30 INFO [auto_gptq.quantization.gptq] avg loss: 14.252044677734375
INFO - Quantizing self_attn.o_proj in layer 1/64...
2025-03-16 13:08:35 INFO [auto_gptq.quantization.gptq] duration: 1.4259772300720215
2025-03-16 13:08:35 INFO [auto_gptq.quantization.gptq] avg loss: 21.492481231689453
INFO - Quantizing mlp.up_proj in layer 1/64...
2025-03-16 13:08:42 INFO [auto_gptq.quantization.gptq] duration: 1.4980144500732422
2025-03-16 13:08:42 INFO [auto_gptq.quantization.gptq] avg loss: 11.520009994506836
INFO - Quantizing mlp.gate_proj in layer 1/64...
2025-03-16 13:08:43 INFO [auto_gptq.quantization.gptq] duration: 1.4689013957977295
2025-03-16 13:08:43 INFO [auto_gptq.quantization.gptq] avg loss: 13.158416748046875
INFO - Quantizing mlp.down_proj in layer 1/64...
2025-03-16 13:09:36 INFO [auto_gptq.quantization.gptq] duration: 11.233691692352295
2025-03-16 13:09:36 INFO [auto_gptq.quantization.gptq] avg loss: 5.198782444000244
INFO - Start quantizing layer 2/64
INFO - Quantizing self_attn.k_proj in layer 2/64...
2025-03-16 13:09:50 INFO [auto_gptq.quantization.gptq] duration: 1.4270472526550293
2025-03-16 13:09:50 INFO [auto_gptq.quantization.gptq] avg loss: 0.25423723459243774
INFO - Quantizing self_attn.v_proj in layer 2/64...
2025-03-16 13:09:51 INFO [auto_gptq.quantization.gptq] duration: 1.377784252166748
2025-03-16 13:09:51 INFO [auto_gptq.quantization.gptq] avg loss: 0.12605950236320496
INFO - Quantizing self_attn.q_proj in layer 2/64...
2025-03-16 13:09:53 INFO [auto_gptq.quantization.gptq] duration: 1.3954062461853027
2025-03-16 13:09:53 INFO [auto_gptq.quantization.gptq] avg loss: 0.6923567056655884
INFO - Quantizing self_attn.o_proj in layer 2/64...
2025-03-16 13:09:58 INFO [auto_gptq.quantization.gptq] duration: 1.4187729358673096
2025-03-16 13:09:58 INFO [auto_gptq.quantization.gptq] avg loss: 0.21527329087257385
INFO - Quantizing mlp.up_proj in layer 2/64...
2025-03-16 13:10:05 INFO [auto_gptq.quantization.gptq] duration: 1.4918739795684814
2025-03-16 13:10:05 INFO [auto_gptq.quantization.gptq] avg loss: 42.98908615112305
INFO - Quantizing mlp.gate_proj in layer 2/64...
2025-03-16 13:10:07 INFO [auto_gptq.quantization.gptq] duration: 1.4632303714752197
2025-03-16 13:10:07 INFO [auto_gptq.quantization.gptq] avg loss: 254.09523010253906
INFO - Quantizing mlp.down_proj in layer 2/64...
2025-03-16 13:10:59 INFO [auto_gptq.quantization.gptq] duration: 11.405533790588379
2025-03-16 13:10:59 INFO [auto_gptq.quantization.gptq] avg loss: 1.4062278270721436
INFO - Start quantizing layer 3/64.......
2025-03-16 14:33:08 INFO [auto_gptq.quantization.gptq] duration: 11.416744709014893
2025-03-16 14:33:08 INFO [auto_gptq.quantization.gptq] avg loss: 10015.05078125
INFO - Start quantizing layer 62/64
INFO - Quantizing self_attn.k_proj in layer 62/64...
2025-03-16 14:33:22 INFO [auto_gptq.quantization.gptq] duration: 1.4608099460601807
2025-03-16 14:33:22 INFO [auto_gptq.quantization.gptq] avg loss: 129.20584106445312
INFO - Quantizing self_attn.v_proj in layer 62/64...
2025-03-16 14:33:23 INFO [auto_gptq.quantization.gptq] duration: 1.417314052581787
2025-03-16 14:33:23 INFO [auto_gptq.quantization.gptq] avg loss: 834.720947265625
INFO - Quantizing self_attn.q_proj in layer 62/64...
2025-03-16 14:33:25 INFO [auto_gptq.quantization.gptq] duration: 1.4364099502563477
2025-03-16 14:33:25 INFO [auto_gptq.quantization.gptq] avg loss: 770.3301391601562
INFO - Quantizing self_attn.o_proj in layer 62/64...
2025-03-16 14:33:30 INFO [auto_gptq.quantization.gptq] duration: 1.4644238948822021
2025-03-16 14:33:30 INFO [auto_gptq.quantization.gptq] avg loss: 1413.948486328125
INFO - Quantizing mlp.up_proj in layer 62/64...
2025-03-16 14:33:38 INFO [auto_gptq.quantization.gptq] duration: 1.5320115089416504
2025-03-16 14:33:38 INFO [auto_gptq.quantization.gptq] avg loss: 7386.39453125
INFO - Quantizing mlp.gate_proj in layer 62/64...
2025-03-16 14:33:39 INFO [auto_gptq.quantization.gptq] duration: 1.5006358623504639
2025-03-16 14:33:39 INFO [auto_gptq.quantization.gptq] avg loss: 6787.9912109375
INFO - Quantizing mlp.down_proj in layer 62/64...
2025-03-16 14:34:32 INFO [auto_gptq.quantization.gptq] duration: 11.412427186965942
2025-03-16 14:34:32 INFO [auto_gptq.quantization.gptq] avg loss: 11235.9814453125
INFO - Start quantizing layer 63/64
INFO - Quantizing self_attn.k_proj in layer 63/64...
2025-03-16 14:34:46 INFO [auto_gptq.quantization.gptq] duration: 1.4546654224395752
2025-03-16 14:34:46 INFO [auto_gptq.quantization.gptq] avg loss: 130.98355102539062
INFO - Quantizing self_attn.v_proj in layer 63/64...
2025-03-16 14:34:48 INFO [auto_gptq.quantization.gptq] duration: 1.4156157970428467
2025-03-16 14:34:48 INFO [auto_gptq.quantization.gptq] avg loss: 958.8649291992188
INFO - Quantizing self_attn.q_proj in layer 63/64...
2025-03-16 14:34:49 INFO [auto_gptq.quantization.gptq] duration: 1.4323241710662842
2025-03-16 14:34:49 INFO [auto_gptq.quantization.gptq] avg loss: 780.7476196289062
INFO - Quantizing self_attn.o_proj in layer 63/64...
2025-03-16 14:34:55 INFO [auto_gptq.quantization.gptq] duration: 1.4556679725646973
2025-03-16 14:34:55 INFO [auto_gptq.quantization.gptq] avg loss: 2276.7041015625
INFO - Quantizing mlp.up_proj in layer 63/64...
2025-03-16 14:35:01 INFO [auto_gptq.quantization.gptq] duration: 1.533803939819336
2025-03-16 14:35:01 INFO [auto_gptq.quantization.gptq] avg loss: 7764.6142578125
INFO - Quantizing mlp.gate_proj in layer 63/64...
2025-03-16 14:35:03 INFO [auto_gptq.quantization.gptq] duration: 1.4962470531463623
2025-03-16 14:35:03 INFO [auto_gptq.quantization.gptq] avg loss: 7304.74365234375
INFO - Quantizing mlp.down_proj in layer 63/64...
2025-03-16 14:35:56 INFO [auto_gptq.quantization.gptq] duration: 11.429993629455566
2025-03-16 14:35:56 INFO [auto_gptq.quantization.gptq] avg loss: 17015.2734375
INFO - Start quantizing layer 64/64
INFO - Quantizing self_attn.k_proj in layer 64/64...
2025-03-16 14:36:10 INFO [auto_gptq.quantization.gptq] duration: 1.453392744064331
2025-03-16 14:36:10 INFO [auto_gptq.quantization.gptq] avg loss: 112.55108642578125
INFO - Quantizing self_attn.v_proj in layer 64/64...
2025-03-16 14:36:11 INFO [auto_gptq.quantization.gptq] duration: 1.4028844833374023
2025-03-16 14:36:11 INFO [auto_gptq.quantization.gptq] avg loss: 509.4556884765625
INFO - Quantizing self_attn.q_proj in layer 64/64...
2025-03-16 14:36:12 INFO [auto_gptq.quantization.gptq] duration: 1.434821605682373
2025-03-16 14:36:12 INFO [auto_gptq.quantization.gptq] avg loss: 685.0777587890625
INFO - Quantizing self_attn.o_proj in layer 64/64...
2025-03-16 14:36:18 INFO [auto_gptq.quantization.gptq] duration: 1.4707720279693604
2025-03-16 14:36:18 INFO [auto_gptq.quantization.gptq] avg loss: 990.3109130859375
INFO - Quantizing mlp.up_proj in layer 64/64...
2025-03-16 14:36:25 INFO [auto_gptq.quantization.gptq] duration: 1.572035312652588
2025-03-16 14:36:25 INFO [auto_gptq.quantization.gptq] avg loss: 8309.283203125
INFO - Quantizing mlp.gate_proj in layer 64/64...
2025-03-16 14:36:27 INFO [auto_gptq.quantization.gptq] duration: 1.8046717643737793
2025-03-16 14:36:27 INFO [auto_gptq.quantization.gptq] avg loss: 7995.7509765625
INFO - Quantizing mlp.down_proj in layer 64/64...
2025-03-16 14:37:20 INFO [auto_gptq.quantization.gptq] duration: 11.410486698150635
2025-03-16 14:37:20 INFO [auto_gptq.quantization.gptq] avg loss: 27875.2734375
INFO - Packing model...
2025-03-16 14:37:25 INFO [auto_gptq.modeling._utils] Packing model...
Packing model.layers.63.mlp.down_proj...: 100%|██████████| 448/448 [20:01<00:00, 2.68s/it]
INFO - Model packed.
2025-03-16 14:57:31 INFO [auto_gptq.modeling._utils] Model packed.
量化前模型大小为62G:
total 62G
-rw-r--r-- 1 research research 707 Mar 12 10:19 added_tokens.json
-rw-r--r-- 1 research research 16K Mar 12 10:19 args.json
-rw-r--r-- 1 research research 785 Mar 12 10:15 config.json
-rw-r--r-- 1 research research 214 Mar 12 10:15 generation_config.json
-rw-r--r-- 1 research research 1.6M Mar 12 10:19 merges.txt
-rw-r--r-- 1 research research 4.6G Mar 12 10:15 model-00001-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:16 model-00002-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:16 model-00003-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:16 model-00004-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:16 model-00005-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:17 model-00006-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:17 model-00007-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:17 model-00008-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:18 model-00009-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:18 model-00010-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:18 model-00011-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:18 model-00012-of-00014.safetensors
-rw-r--r-- 1 research research 4.6G Mar 12 10:19 model-00013-of-00014.safetensors
-rw-r--r-- 1 research research 2.0G Mar 12 10:19 model-00014-of-00014.safetensors
-rw-r--r-- 1 research research 62K Mar 12 10:19 model.safetensors.index.json
-rw-r--r-- 1 research research 613 Mar 12 10:19 special_tokens_map.json
-rw-r--r-- 1 research research 8.0K Mar 12 10:19 tokenizer_config.json
-rw-r--r-- 1 research research 11M Mar 12 10:19 tokenizer.json
-rw-r--r-- 1 research research 2.7M Mar 12 10:19 vocab.json
量化后模型大小为19G:
total 19G
-rw-r--r-- 1 research research 707 Mar 16 14:58 added_tokens.json
-rw-r--r-- 1 research research 1.2K Mar 16 14:58 config.json
-rw-r--r-- 1 research research 1.6M Mar 16 14:58 merges.txt
-rw-r--r-- 1 research research 19G Mar 16 14:58 model.safetensors
-rw-r--r-- 1 research research 271 Mar 16 14:58 quantize_config.json
-rw-r--r-- 1 research research 613 Mar 16 14:58 special_tokens_map.json
-rw-r--r-- 1 research research 8.0K Mar 16 14:58 tokenizer_config.json
-rw-r--r-- 1 research research 11M Mar 16 14:58 tokenizer.json
-rw-r--r-- 1 research research 2.7M Mar 16 14:58 vocab.json
3. 量化模型部署
vLLM已支持GPTQ,可以直接使用AutoGPTQ
量化的模型。使用GPTQ模型与vLLM的基本用法相同。
CUDA_VISIBLE_DEVICES=0,1,2,3 \
vllm serve /data/quantized_model \
--tensor-parallel-size 4 \
--port 8001
随后,可以这样调用API:
curl http://localhost:8001/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "quantized_model",
"messages": [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": "推荐一款防水耳机."}
],
"temperature": 0.7,
"top_p": 0.8,
"repetition_penalty": 1.05,
"max_tokens": 512
}'
也可以使用 openai
Python包中的API客户端:
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8001/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="/data/quantized_model",
messages=[
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": "推荐一款防水耳机"},
],
temperature=0.7,
top_p=0.8,
max_tokens=512,
extra_body={
"repetition_penalty": 1.05,
},
)
print("Chat response:", chat_response)
实测了下,模型生成吞吐量可以在92 tokens/s, 还是很不错的。
4. 参考材料
【1】https://github.com/AutoGPTQ/AutoGPTQ/issues/196
【2】GPTQ - Qwen