在 web 部署 YOLOv8目标检测(Django+html)

发布于:2025-03-20 ⋅ 阅读:(21) ⋅ 点赞:(0)

        本文介绍如何将自己训练好的模型在网页上进行应用,使用 Django + html 进行部署,能够对视频和图像进行识别,并显示到页面上,下面是一个效果:

 

上 传 和另外 7 个页面 - 个人 - Microsoft Edge 2025-03-13 21-52-06

下面进行教学,想直接要源码的直接滑到最底下。

 

        首先配置环境,设置一个全局文件夹,用于储存每次选择和检测完的图片和视频:

setting.py 中加入:

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')

并在 app01 下新建一个 media 文件夹用于存放检测完的图片和视频。

html 页面:

<!DOCTYPE html>
<html>
<head>
    <title>上 传</title>
</head>
<body>
    <h1>web部署yolo实现图片视频检测</h1>
    <form method="post" id="upload-form" enctype="multipart/form-data">
{#        enctype="multipart/form-data" 表单上传文件必须设置#}
        {% csrf_token %}
        <label for="{{ form.file.id_for_label }}"></label><br>
        {{ form.file }}<br>
        <br>
        <button type="submit">检测</button>
    </form>

    <div id="result">
        <!-- 处理结果显示区域 -->
        <h2>检测结果:</h2>
        <img id="processed-image" src="" alt="Processed Image" style="display:none; max-width: 100%;"/>
        <video id="processed-video" controls style="display:none; max-width: 100%;">
            <source id="processed-video-source" src="" type="video/mp4">
            Your browser does not support the video tag.
        </video>
    </div>
</body>
</html>

文件上传部分用的 from 表单,点击检测按钮后,表单以 POST 请求提交到后台。

后台在接收之前,先定义两个函数:

该函数用于将用户提交的文件名进行清理

def secure_filename(filename):
    """
    Secure a filename by removing or replacing invalid characters.
    """
    if filename is None:
        return None

    # Replace spaces with underscores
    for sep in os.path.sep, os.path.altsep:
        if sep:
            filename = filename.replace(sep, '_')
    # 去掉前后空格
    filename = filename.strip()
    # 去掉前面可能存在的.
    filename = filename.lstrip('.')

    # 将不合理路径修改
    valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits)
    cleaned_filename = ''.join(c for c in filename if c in valid_chars)
    return cleaned_filename

如果不使用 secure_filename 函数来清理上传的文件名,可能会遇到以下问题

  • 安全风险:用户可以上传带有路径分隔符的文件名,尝试覆盖服务器上的其他文件,甚至执行目录遍历攻击。
  • 文件名冲突:如果文件名包含非法字符或特殊符号,可能导致文件系统无法正确处理这些文件名,造成文件存储失败或其他异常行为。
  • 不可预测的行为:不同的操作系统对文件名有不同的限制,忽略这些限制可能会导致应用在某些环境中运行不稳定。

该函数用于处理视频检测

def process_video(video_path, output_path):
    model = YOLO(r'F:\全栈\Django\YOLO_django\app01\files\best.pt')
    clip = VideoFileClip(video_path)
    # 检测每一帧
    def process_frame(frame):
        results = model(frame)
        # 返回每一帧的识别结果
        return results[0].plot()
    # clip.fl_image 对原始视频每一帧进行函数应用
    modified_clip = clip.fl_image(process_frame)
    modified_clip.write_videofile(output_path, codec='libx264')

best.pt 是自己训练的模型,我这是车辆识别模型,包括 car 、van、bus、trunk 四种类型,可以替换成自己的模型,我的模型在文章结尾也会给出。

接下来是最主要的视图函数:

def detect(request):
    if request.method == 'POST':
        form = UploadFileForm(request.POST, request.FILES)
        if form.is_valid():
            uploaded_file = request.FILES['file']
            filename = secure_filename(uploaded_file.name)

            media_root = settings.MEDIA_ROOT
            upload_path = os.path.join(media_root, filename)

            os.makedirs(media_root, exist_ok=True)

            with open(upload_path, 'wb') as f:
                for chunk in uploaded_file.chunks():
                    f.write(chunk)

            try:
                model = YOLO(r'F:\全栈\Django\YOLO_django\app01\files\best.pt')
            except Exception as e:
                return JsonResponse({"error": str(e)}, status=500)

            if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
                frame = cv2.imread(upload_path)
                if frame is None:
                    return JsonResponse({"error": "Failed to read the image"}, status=500)

                results = model(frame)
                processed_image = results[0].plot()
                processed_image_path = os.path.splitext(upload_path)[0] + '_processed.png'
                cv2.imwrite(processed_image_path, processed_image)

                processed_image_url = os.path.join(settings.MEDIA_URL,
                                                   os.path.relpath(processed_image_path, media_root))
                data = {"imgid": filename, "processed_image_url": processed_image_url}

            elif filename.lower().endswith(('.mp4', '.avi', '.mov')):
                processed_video_path = os.path.splitext(upload_path)[0] + '_processed.mp4'
                process_video(upload_path, processed_video_path)
                processed_video_url = os.path.join(settings.MEDIA_URL,
                                                   os.path.relpath(processed_video_path, media_root))
                data = {"videoid": filename, "processed_video_url": processed_video_url}

            else:
                return JsonResponse({"error": "Unsupported file format"}, status=400)

            return JsonResponse(data)
    else:
        form = UploadFileForm()
        print("form:",form)
        return render(request, 'upload.html', {'form': form})

该函数将上传的图片或者视频进行检测,并将结果保

<script>
    document.getElementById('upload-form').onsubmit = async function(event) {
        event.preventDefault();
        const formData = new FormData(this);

        const response = await fetch('', {
            method: 'POST',
            body: formData,
        });
        const result = await response.json();

        if (result.processed_image_url || result.processed_video_url) {
            const processed_image = document.getElementById('processed-image');
            const processed_video = document.getElementById('processed-video');
            const processed_video_source = document.getElementById('processed-video-source');

            if(result.processed_image_url){
                processed_image.src = result.processed_image_url;
                processed_image.style.display = 'block';
                processed_video.style.display = 'none'; // 隐藏视频元素
            } else if(result.processed_video_url){
                processed_video_source.src = result.processed_video_url;
                processed_video.load(); // 重新加载视频元素
                processed_video.style.display = 'block';
                processed_image.style.display = 'none'; // 隐藏图片元素
            }
        }
    };
    </script>

存到文件夹中,并构造 url 路径,返回给 web 页面。

接下来在 html 中编写 js 代码:

通过添加表单监听事件,异步获取后端返回的内容,判断资源类型,再赋值给相应的 DOM 元素

<script>
    document.getElementById('upload-form').onsubmit = async function(event) {
        event.preventDefault();
        const formData = new FormData(this);

        const response = await fetch('', {
            method: 'POST',
            body: formData,
        });
        const result = await response.json();

        if (result.processed_image_url || result.processed_video_url) {
            const processed_image = document.getElementById('processed-image');
            const processed_video = document.getElementById('processed-video');
            const processed_video_source = document.getElementById('processed-video-source');

            if(result.processed_image_url){
                processed_image.src = result.processed_image_url;
                processed_image.style.display = 'block';
                processed_video.style.display = 'none'; // 隐藏视频元素
            } else if(result.processed_video_url){
                processed_video_source.src = result.processed_video_url;
                processed_video.load(); // 重新加载视频元素
                processed_video.style.display = 'block';
                processed_image.style.display = 'none'; // 隐藏图片元素
            }
        }
    };
    </script>

 

今天的分享就到这儿了,项目已打包好放在我的资源中:

https://download.csdn.net/download/2403_83182682/90481398

 

感谢您的观看,后续将持续更新!!