第一章 Python语言概述与生态体系

1.3 Python在工业界的应用场景
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
price: float
@app.post("/items/")
async def create_item(item: Item):
return {
"item_name": item.name, "adjusted_price": item.price*1.1}
1.4 Python版本选择指南
if (n := len([1,2,3])) > 2:
print(f"List length {
n} is greater than 2")
第三章 Python核心语法精解
3.2 数据结构进阶操作
dict1 = {
'a': 1, 'b': 2}
dict2 = {
'b': 3, 'c': 4}
merged = dict1 | dict2
matrix = [[1,2], [3,4], [5,6]]
flatten = [num for row in matrix for num in row]
3.4 上下文管理器原理
class DatabaseConnection:
def __init__(self, db_name):
self.db_name = db_name
def __enter__(self):
self.conn = sqlite3.connect(self.db_name)
return self.conn
def __exit__(self, exc_type, exc_val, exc_tb):
self.conn.close()
if exc_type:
print(f"Error occurred: {
exc_val}")
with DatabaseConnection("test.db") as conn:
cursor = conn.cursor()
cursor.execute("SELECT * FROM users")
第六章 异常处理与调试技巧
6.2 调试器高级用法
import pdb
def complex_calculation(a, b):
result = 0
for i in range(a):
pdb.set_trace()
result += (i * b) ** 2
return result
第十章 数据分析与可视化
10.1 Pandas数据处理实战
import pandas as pd
import numpy as np
date_rng = pd.date_range(start='2023-01-01', end='2023-01-10', freq='D')
df = pd.DataFrame({
'date': date_rng,
'value': np.random.randn(len(date_rng)).cumsum()
})
df['3_day_avg'] = df['value'].rolling(window=3).mean()
pivot = pd.pivot_table(df,
values='value',
index=df['date'].dt.day,
aggfunc=['mean', 'max'])
10.2 Matplotlib可视化进阶
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, projection='3d')
x = np.random.standard_normal(100)
y = np.random.standard_normal(100)
z = np.sin(x**2 + y**2)
ax.scatter(x, y, z, c=z, cmap='viridis')
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')
ax.set_zlabel('Z Value')
plt.title("3D Scatter Plot with Color Mapping")
plt