卷积神经网络convolutional neural network,CNN 是为处理图像数据而生的网络,主要由卷积层(填充和步幅)、池化层(汇聚层)、全连接层组成。
卷积
虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。
真实的卷积运算是f(a,b)g(i-a,j-b),其实有一个取反的过程,但是我们实际代码里使用的是互相关运算。
输入的宽度为n,卷积核宽度为k,则输出宽度为n-k+1。
卷积层的参数包括卷积核和偏置,感受野receptive field指的是在前向传播期间影响x计算的所有元素(来自之前所有层)。
一般填充p行在上下,为了上下保持一致,卷积核一般是奇数的长度。输出变为n+p-k+1
滑动步幅为s时,输出变为(n+p-k+s)/s
多输入通道可以:构造相同通道的卷积核,最后对多通道求和输出
多输出通道可以:为每个输出通道o创建一个i*w*h的卷积核,有o个这样的卷积核。
1x1卷积层的作用:看作在每个像素位置应用的全连接层,把i个输入值转换为o个输出层。看这个博主的动图1x1卷积核,没有太明白。文章2 作用:降维/升维,增加非线性,跨通道信息交互。
LeNet
import torch
from torch import nn
from torchvision import transforms
import torchvision
from torch.utils import data
import matplotlib.pyplot as plt
def load_data_fashion_mnist(batch_size, resize=None):
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)
#print(len(mnist_train),len(mnist_test))
return (data.DataLoader(mnist_train, batch_size, shuffle=True),
data.DataLoader(mnist_test, batch_size, shuffle=False)) #windows下不能多进程,linux下可以
batch_size=256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
net=nn.Sequential(
nn.Conv2d(1,6,kernel_size=5,padding=2),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2,stride=2),
nn.Conv2d(6,16,kernel_size=5),
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2,stride=2),
nn.Flatten(),
nn.Linear(16*5*5,120),
nn.Sigmoid(),
nn.Linear(120,84),
nn.Sigmoid(),
nn.Linear(84,10)
)
def accuracy(y_hat, y):
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
class Accumulator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
"""使⽤GPU计算模型在数据集上的精度"""
if isinstance(net, nn.Module):
net.eval() # 设置为评估模式
if not device:
device = next(iter(net.parameters())).device
# 正确预测的数量,总预测的数量
metric = Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
if isinstance(X, list):
# BERT微调所需的(之后将介绍)
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
class Animator:
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使⽤lambda函数捕获参数
self.config_axes = lambda: set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
#display.display(self.fig)
# 通过以下两行代码实现了在PyCharm中显示动图
plt.draw()
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
"""⽤GPU训练模型(在第六章定义)"""
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
print('training on', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])
num_batches = len(train_iter)
for epoch in range(num_epochs):
# 训练损失之和,训练准确率之和,样本数
metric = Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')
lr, num_epochs = 0.9, 10
def try_gpu(i=0): #@save
"""如果存在,则返回gpu(i),否则返回cpu()"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
train_ch6(net, train_iter, test_iter, num_epochs, lr, try_gpu())
现代卷积神经网络
AlexNet 第一个击败传统模型的大型神经网络
VGG 使用重复的神经网络块
NiN 重复使用1x1卷积层构造深层网络
GoogLeNet 并行连结的网络
ResNet 残差网络 是计算机视觉最流行的体系架构 特点是跨层数据通路前向传播
DenseNet 是resnet的逻辑扩展(泰勒展开),使用的是cancat而不是相加,主要由稠密层和过渡层(1x1卷积核,降低通道数)构成