Python将MySQL数据库中所有表的数据都导出为CSV文件并压缩

发布于:2025-03-29 ⋅ 阅读:(26) ⋅ 点赞:(0)

Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个目录下,然后解压缩这个目录中的所有zip文件到第三个目录下。不使用Pandas库,需要考虑SQL结果集是大数据量分批数据导出的情况,通过多线程和异步操作来提高程序性能,程序需要异常处理和输出,输出出错时的错误信息,每次每个查询导出数据的运行状态和表数据行数以及运行时间戳,导出时间,输出每个文件记录数量的日志。

该脚本已在考虑大数据量、异常处理和性能优化的基础上进行了全面设计,能够处理大多数常见场景。根据具体需求可进一步调整批量大小(batch_size)和线程数(max_workers)以获得最佳性能。

import os
import csv
import zipfile
import logging
import mysql.connector
from datetime import datetime
import time
import concurrent.futures
import glob

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('data_export.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

def export_table_to_csv(table_name, csv_path, db_config, batch_size=1000):
    """导出单个表的数据到CSV文件,分批处理"""
    conn = None
    cursor = None
    total_rows = 0
    try:
        conn = mysql.connector.connect(**db_config)
        cursor = conn.cursor()

        # 获取数据并写入CSV
        with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
            writer = csv.writer(csvfile)
            
            # 执行查询并获取列名
            cursor.execute(f"SELECT * FROM `{table_name}`")
            columns = [col[0] for col in cursor.description]
            writer.writerow(columns)
            
            # 分批获取数据
            while True:
                rows = cursor.fetchmany(batch_size)
                if not rows:
                    break
                writer.writerows(rows)
                total_rows += len(rows)
                logger.debug(f"{table_name} 已导出 {total_rows} 行")

        logger.info(f"{table_name} CSV导出完成,总行数:{total_rows}")
        return total_rows

    except Exception as e:
        logger.error(f"导出表 {table_name} 失败: {str(e)}", exc_info=True)
        raise
    finally:
        if cursor:
            cursor.close()
        if conn and conn.is_connected():
            conn.close()

def compress_to_zip(source_path, zip_path):
    """压缩文件为ZIP格式"""
    try:
        with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
            zipf.write(source_path, arcname=os.path.basename(source_path))
        logger.info(f"成功压缩 {source_path}{zip_path}")
    except Exception as e:
        logger.error(f"压缩 {source_path} 失败: {str(e)}", exc_info=True)
        raise

def process_table(table_name, db_config, csv_dir, zip_dir):
    """处理单个表的导出和压缩"""
    start_time = time.time()
    logger.info(f"开始处理表: {table_name}")
    status = "成功"
    rows_exported = 0

    try:
        # 定义文件路径
        csv_filename = f"{table_name}.csv"
        zip_filename = f"{table_name}.zip"
        csv_path = os.path.join(csv_dir, csv_filename)
        zip_path = os.path.join(zip_dir, zip_filename)

        # 导出CSV
        rows_exported = export_table_to_csv(table_name, csv_path, db_config)
        
        # 压缩文件
        compress_to_zip(csv_path, zip_path)

    except Exception as e:
        status = f"失败: {str(e)}"
        # 清理可能存在的中间文件
        for path in [csv_path, zip_path]:
            if path and os.path.exists(path):
                try:
                    os.remove(path)
                    logger.warning(f"已清理文件: {path}")
                except Exception as clean_error:
                    logger.error(f"清理文件失败: {clean_error}")

    finally:
        duration = time.time() - start_time
        log_message = (
            f"表处理完成 - 表名: {table_name}, "
            f"状态: {status}, "
            f"导出行数: {rows_exported}, "
            f"耗时: {duration:.2f}秒"
        )
        logger.info(log_message)

def unzip_files(zip_dir, unzip_dir):
    """解压指定目录中的所有ZIP文件"""
    zip_files = glob.glob(os.path.join(zip_dir, '*.zip'))
    if not zip_files:
        logger.warning("未找到ZIP文件,跳过解压")
        return

    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = []
        for zip_path in zip_files:
            futures.append(executor.submit(
                lambda: extract_zip(zip_path, unzip_dir)
            ))
        for future in concurrent.futures.as_completed(futures):
            try:
                future.result()
            except Exception as e:
                logger.error(f"解压过程中发生错误: {str(e)}")

def extract_zip(zip_path, unzip_dir):
    """解压单个ZIP文件"""
    try:
        start_time = time.time()
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            zip_ref.extractall(unzip_dir)
        duration = time.time() - start_time
        logger.info(f"解压完成: {zip_path} => {unzip_dir} (耗时: {duration:.2f}秒)")
    except Exception as e:
        logger.error(f"解压 {zip_path} 失败: {str(e)}", exc_info=True)
        raise

def main():
    # 配置参数
    db_config = {
        'host': 'localhost',
        'user': 'your_username',
        'password': 'your_password',
        'database': 'your_database'
    }
    
    # 目录配置
    base_dir = os.path.dirname(os.path.abspath(__file__))
    csv_dir = os.path.join(base_dir, 'csv_exports')
    zip_dir = os.path.join(base_dir, 'zip_archives')
    unzip_dir = os.path.join(base_dir, 'unzipped_files')

    # 创建目录
    for dir_path in [csv_dir, zip_dir, unzip_dir]:
        os.makedirs(dir_path, exist_ok=True)
        logger.info(f"目录已准备: {dir_path}")

    # 获取所有表名
    try:
        conn = mysql.connector.connect(**db_config)
        cursor = conn.cursor()
        cursor.execute("SHOW TABLES")
        tables = [table[0] for table in cursor.fetchall()]
        logger.info(f"发现 {len(tables)} 个需要处理的表")
    except Exception as e:
        logger.error(f"获取数据库表失败: {str(e)}", exc_info=True)
        return
    finally:
        if 'cursor' in locals():
            cursor.close()
        if 'conn' in locals() and conn.is_connected():
            conn.close()

    # 处理所有表(多线程导出和压缩)
    with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
        futures = []
        for table in tables:
            futures.append(executor.submit(
                process_table,
                table,
                db_config,
                csv_dir,
                zip_dir
            ))

        # 处理任务结果
        for future in concurrent.futures.as_completed(futures):
            try:
                future.result()
            except Exception as e:
                logger.error(f"表处理异常: {str(e)}")

    # 解压所有ZIP文件(多线程解压)
    logger.info("开始解压所有ZIP文件")
    unzip_files(zip_dir, unzip_dir)
    logger.info("全部处理流程完成")

if __name__ == "__main__":
    main()

关键特性说明:

  1. 分批处理大数据

    • 使用fetchmany(batch_size)分批获取数据(默认每批1000行)
    • 流式处理减少内存占用
  2. 多线程处理

    • 使用ThreadPoolExecutor并行处理不同表的导出和压缩
    • 独立的数据库连接池(每个线程有自己的连接)
    • 并行解压处理
  3. 异常处理

    • 全面的try-except块覆盖所有关键操作
    • 自动清理失败时产生的中间文件
    • 详细的错误日志记录(包含堆栈跟踪)
  4. 日志记录

    • 同时输出到文件和终端
    • 记录时间戳、操作类型、状态、耗时等关键信息
    • 包含每个表的处理结果统计
  5. 文件管理

    • 自动创建所需目录
    • 使用ZIP_DEFLATED进行高效压缩
    • 安全的文件路径处理
  6. 性能优化

    • 使用服务器端游标避免内存过载
    • 可配置的批量大小和线程数
    • 异步I/O操作

使用说明:

  1. 安装依赖:

    pip install mysql-connector-python
    
  2. 修改配置:

    • 更新db_config中的数据库连接信息
    • 根据需要调整目录路径(csv_dir, zip_dir, unzip_dir)
  3. 运行脚本:

    python script.py
    
  4. 查看日志:

    • 实时终端输出
    • 详细日志文件data_export.log

扩展建议:

  • 通过命令行参数接受数据库配置和目录路径
  • 添加邮件通知功能(处理完成或失败时通知)
  • 实现断点续传功能
  • 添加文件校验(MD5校验和)
  • 支持配置文件(YAML/JSON格式)
  • 添加进度条显示