DeepSeek协助优化-GTX750Ti文物显卡0.65秒卷完400MB float 音频512阶时域FIR

发布于:2025-04-01 ⋅ 阅读:(27) ⋅ 点赞:(0)

1. 学习目的

最近在学习cuda,准备给我的taskBus SDR添加CUDA的模块支持,以便可以用PC机压榨山寨 B210那56M的带宽。
因为年纪比较大了,所以不打算看书了,直接DeepSeek安排上,结果发现学习效率杠杠的!

2. 阶段成果

我用自己的文物显卡 NVIDIA GeForce GTX 750 Ti (Compute Capability 5.0),只有2G的显存,1G的主频,做时域512点fir卷积,竟然只需0.65秒就跑完100M float数据(411MB文件大小)。

关键技术是使用了三个线程进行读写处理分离。

2.1 NVVP 性能探查

使用NVVP,可以看到GPU的占空比还是很紧凑。
NVCCASYNC主要时间花在了fir_kernel,这是我们希望的。同时,部分时间在进行GPU内部的memCpy,这也是值得进一步优化的方向。

由于磁盘IO完全和CPU计算独立,所以两波计算之间几乎没有空闲。

2.2 测试编译环境

Manjaro 20250321,CUDA12

Intel Core i7 6500K @ 4.0GHz

编译命令:

nvcc -arch=sm_50 cuda_filter.cu -o cuda_filter

注意要使用 -arch=sm_50 选择老的计算兼容选项,否则CUDA启动后会报错。

2.3 测试样例

测试样例是用 AudaCity录制的音频,411MB大小,100MB左右的float32样点(单声道)

对比
滤波器对数据(轨道1)做512点的平均(192KHz采样率下,大概是2秒多)。

3 学习过程

3.1 提问DeepSeek

提问:

使用C语言调用CUDA实现一个连续FIR滤波算法。用户使用该算法的步骤是:

  1. 打开文件 test.pcm。
  2. 循环每次读取一定个数(N个)float值,直到文件尾部。
  3. 对每次读取的float值,调用 push_and_filter() 方法。该方法是你需要着重考虑设计、实现的,作用是接着上次的状态,继续执行连续滤波。滤波器是一个提前定义好的数组,有M个元素,float类型,M目前设置合理范围是16-2048。
  4. 每次滤波的输出,存储在 out.pcm,连续写入。
  5. 滤波缓存一开始为全0,尾部也全部清零后结束。
    请根据CUDA的特性,分析并设计每次读取的N的个数,让计算尽可能快,并给出全部代码。

回答:

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>

#define MAX_FILTER_LENGTH 2048
#define OPTIMAL_N 4096  // 根据GPU架构优化的读取块大小
#define BLOCK_SIZE 256   // CUDA线程块大小

typedef struct {
    float* buffer;
    int size;
} CircularBuffer;

__constant__ float d_filter[MAX_FILTER_LENGTH];  // 滤波器系数存储在常量内存

// CUDA核函数,使用共享内存优化
__global__ void fir_kernel(const float* input, float* output, int N, int M) {
    extern __shared__ float s_window[];
    const int tid = threadIdx.x;
    const int bid = blockIdx.x;
    const int gid = bid * blockDim.x + tid;

    // 每个块加载自己需要的输入窗口
    const int window_size = blockDim.x + MAX_FILTER_LENGTH - 1;
    const int input_offset = bid * blockDim.x;
    
    // 协作加载数据到共享内存
    for(int i = tid; i < window_size; i += blockDim.x) {
        const int load_pos = input_offset + i;
        s_window[i] = (load_pos < N + M - 1) ? input[load_pos] : 0.0f;
    }
    __syncthreads();

    if(gid < N) {  // 确保不越界
        float sum = 0.0f;
        for(int j = 0; j < M; j++) {
            sum += s_window[tid + j] * d_filter[j];
        }
        output[gid] = sum;
    }
}

void push_and_filter(CircularBuffer* state, const float* input, int input_len,
                     float** output, int* output_len, int M, cudaStream_t stream) {
    // 准备扩展输入缓冲区(历史数据 + 新输入)
    const int total_len = state->size + input_len;
    float* extended_input = (float*)malloc(total_len * sizeof(float));
    
    // 合并历史数据和当前输入
    memcpy(extended_input, state->buffer, state->size * sizeof(float));
    memcpy(extended_input + state->size, input, input_len * sizeof(float));

    // 准备设备内存
    float *d_input, *d_output;
    const int output_size = input_len;
    cudaMalloc(&d_input, total_len * sizeof(float));
    cudaMalloc(&d_output, output_size * sizeof(float));

    // 异步内存拷贝和计算
    cudaMemcpyAsync(d_input, extended_input, total_len * sizeof(float),
                   cudaMemcpyHostToDevice, stream);

    const dim3 grid_dim((output_size + BLOCK_SIZE - 1) / BLOCK_SIZE);
    const dim3 block_dim(BLOCK_SIZE);
    const size_t shared_mem = (BLOCK_SIZE + MAX_FILTER_LENGTH - 1) * sizeof(float);

    fir_kernel<<<grid_dim, block_dim, shared_mem, stream>>>(
        d_input, d_output, output_size, M
    );

    // 回收历史数据(保留最后M-1个样本)
    free(state->buffer);
    state->size = M - 1;
    state->buffer = (float*)malloc(state->size * sizeof(float));
    memcpy(state->buffer, extended_input + input_len, state->size * sizeof(float));

    // 异步获取结果
    *output = (float*)malloc(output_size * sizeof(float));
    cudaMemcpyAsync(*output, d_output, output_size * sizeof(float),
                   cudaMemcpyDeviceToHost, stream);
    cudaStreamSynchronize(stream);
    
    *output_len = output_size;
    free(extended_input);
    cudaFree(d_input);
    cudaFree(d_output);
}

int main() {
    // 初始化滤波器系数(示例值)
    const int M = 512;
    float h_filter[M];
    for(int i = 0; i < M; i++) h_filter[i] = 1.0f/M;
    cudaMemcpyToSymbol(d_filter, h_filter, M * sizeof(float));

    // 创建CUDA流和状态缓冲区
    cudaStream_t stream;
    cudaStreamCreate(&stream);
    CircularBuffer state = {NULL, 0};

    FILE *fin = fopen("test.pcm", "rb");
    FILE *fout = fopen("out.pcm", "wb");
    float *input_buf = (float*)malloc(OPTIMAL_N * sizeof(float));

    while(1) {
        const size_t read_cnt = fread(input_buf, sizeof(float), OPTIMAL_N, fin);
        if(read_cnt == 0) break;

        float* output_buf;
        int output_len;
        push_and_filter(&state, input_buf, read_cnt, &output_buf, &output_len, M, stream);
        
        fwrite(output_buf, sizeof(float), output_len, fout);
        free(output_buf);
    } 

    // 清理资源
    free(input_buf);
    free(flush_buf);
    free(state.buffer);
    fclose(fin);
    fclose(fout);
    cudaStreamDestroy(stream);
    return 0;
}

而后,利用多线程修改,多次互动后,得到最终代码:

3.2 最终代码

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <atomic>
#include <chrono>
#include <thread>
#define MAX_FILTER_LENGTH 2048
#define OPTIMAL_N 1024*1024  // Optimal read block size based on GPU architecture
#define BLOCK_SIZE 256       // CUDA thread block size
#define NUM_STREAMS 4
#define CHECK_CUDA(call) { \
    cudaError_t err = call; \
    if (err != cudaSuccess) { \
        fprintf(stderr, "CUDA error at %s:%d: %s\n", __FILE__, __LINE__, cudaGetErrorString(err)); \
        exit(EXIT_FAILURE); \
    } \
}


typedef struct {
    float* buffer;
    int size;
    int max_size;
} CircularBuffer;

__constant__ float d_filter[MAX_FILTER_LENGTH];  // Filter coefficients in constant memory

// CUDA kernel with shared memory optimization
__global__ void fir_kernel(const float* input, float* output, int N, int M) {
    extern __shared__ float s_window[];
    const int tid = threadIdx.x;
    const int bid = blockIdx.x;
    const int gid = bid * blockDim.x + tid;

    // Each block loads its needed input window
    const int window_size = blockDim.x + MAX_FILTER_LENGTH - 1;
    const int input_offset = bid * blockDim.x;
    
    // Cooperative data loading into shared memory
    for(int i = tid; i < window_size; i += blockDim.x) {
        const int load_pos = input_offset + i;
        s_window[i] = (load_pos < N + M - 1) ? input[load_pos] : 0.0f;
    }
    __syncthreads();

    if(gid < N) {  // Ensure we don't go out of bounds
        float sum = 0.0f;
        for(int j = 0; j < M; j++) {
            sum += s_window[tid + j] * d_filter[j];
        }
        output[gid] = sum;
    }
}
//用于拼接前序状态的输入缓存
int mem_ext_input_size = 0;
float* mem_ext_input = 0;
//用于CUDA设备侧的输入输出缓存
float *d_input = 0, *d_output = 0;
int d_inputlen = 0, d_outputlen = 0;

std::atomic<bool> read_finished(false),deal_finished(false);
std::atomic<long long> read_pos(0);
std::atomic<long long> deal_pos(0);
std::atomic<long long> write_pos(0);

//连续滤波函数
void push_and_filter(CircularBuffer* state, const float* input, int input_len,
                     float* output, int * outlen, int M, cudaStream_t stream) {
    // Prepare extended input buffer (history data + new input)
    int ext_input_len = state->size + input_len;
    if (mem_ext_input_size < ext_input_len) {
        if (mem_ext_input)
            free(mem_ext_input);
        mem_ext_input = (float*)malloc(ext_input_len * sizeof(float));
        mem_ext_input_size = ext_input_len;
    }
    
    // Combine history data with current input
    memcpy(mem_ext_input, state->buffer, state->size * sizeof(float));
    memcpy(mem_ext_input + state->size, input, input_len * sizeof(float));

    // Prepare device memory
    const int output_size = input_len;
    if (d_inputlen < ext_input_len) {
        if (d_input)
            cudaFree(d_input);
        CHECK_CUDA(cudaMalloc(&d_input, ext_input_len * sizeof(float)));
        d_inputlen = ext_input_len;
    }
    if (d_outputlen < output_size) {
        if (d_output)
            cudaFree(d_output);
        CHECK_CUDA(cudaMalloc(&d_output, output_size * sizeof(float)));
        d_outputlen = output_size;
    }

    // Synchronous memory copy
    //CHECK_CUDA(cudaMemcpy(d_input, mem_ext_input, ext_input_len * sizeof(float), cudaMemcpyHostToDevice));
     // Async memory operations with stream
    CHECK_CUDA(cudaMemcpyAsync(d_input, mem_ext_input, ext_input_len * sizeof(float), 
               cudaMemcpyHostToDevice, stream));


    const dim3 grid_dim((output_size + BLOCK_SIZE - 1) / BLOCK_SIZE);
    const dim3 block_dim(BLOCK_SIZE);
    const size_t shared_mem = (BLOCK_SIZE + MAX_FILTER_LENGTH - 1) * sizeof(float);

    // Kernel launch with default stream
    fir_kernel<<<grid_dim, block_dim, shared_mem ,stream>>>(
        d_input, d_output, output_size, M
    );

    // Recycle history data (keep last M-1 samples)
    state->size = M - 1;
    if (state->max_size < state->size)
    {
		if (state->buffer )
			free (state->buffer );
		state->buffer = (float*)malloc(state->size * sizeof(float));
		state->max_size = state->size;
	}
    memcpy(state->buffer, mem_ext_input + input_len, state->size * sizeof(float));

    //CHECK_CUDA(cudaMemcpy(output, d_output, output_size * sizeof(float), cudaMemcpyDeviceToHost));
       CHECK_CUDA(cudaMemcpyAsync(output, d_output, output_size * sizeof(float), 
               cudaMemcpyDeviceToHost, stream));

    
    *outlen = output_size;
    CHECK_CUDA(cudaDeviceSynchronize());
    
    return;
}



int main() {
    // Initialize filter coefficients (example values)
    const int M = 512;
    float h_filter[M];
    for(int i = 0; i < M; i++) h_filter[i] = 1.0f/M;
    CHECK_CUDA(cudaMemcpyToSymbol(d_filter, h_filter, M * sizeof(float)));

    // Initialize state buffer
    CircularBuffer state = {NULL, 0 , 0};
    
    const int buf_stage = 8;
	float (*input_buf)[OPTIMAL_N] = new float [buf_stage][OPTIMAL_N];
	float (*output_buf)[OPTIMAL_N] = new float [buf_stage][OPTIMAL_N];
	size_t (*input_len)  = new size_t [buf_stage];
	int (*output_len) = new int [buf_stage];

	//Read thread
	std::thread read_thread([&]()->void{
		FILE *fin = fopen("test.pcm", "rb");
		while(!read_finished) {
			if (deal_pos + buf_stage - 2 <= read_pos)
			{
				//Sleep
				std::chrono::milliseconds dura(1);
				std::this_thread::sleep_for(dura);
				continue;
			}
			const long long pos = read_pos % buf_stage;
			//Read
			input_len[pos] = fread(input_buf[pos], sizeof(float), OPTIMAL_N, fin);
			if(input_len[pos] < OPTIMAL_N) 
				read_finished = true;
			if(++read_pos % 10 ==0)	
				fprintf(stderr,"ReadPos = %lld\n",(long long)read_pos);
		}		
		fclose(fin);
	});
	
	//write thread
	std::thread write_thread([&]()->void{
		FILE *fout = fopen("out.pcm", "wb");
		while((!deal_finished) ||  write_pos < deal_pos) {
			if (write_pos >= deal_pos)
			{
				//Sleep
				std::chrono::milliseconds dura(1);
				std::this_thread::sleep_for(dura);
				continue;
			}
			const long long pos = write_pos % buf_stage;
			if (output_len[pos])
				fwrite(output_buf[pos], sizeof(float), output_len[pos], fout);
			if (++write_pos % 10 ==0)
				fprintf(stderr,"WritePos = %lld\n",(long long)write_pos);
		}		
		fclose(fout);
	});
	
	cudaStream_t streams[buf_stage];
	for (int i = 0; i < buf_stage; i++) {
		cudaStreamCreate(&streams[i]);
	}
	
	//Deal in main Thread
	while ((!read_finished) || deal_pos < read_pos )
	{
		if (deal_pos >= read_pos)
		{
			//Sleep
			std::chrono::milliseconds dura(1);
			std::this_thread::sleep_for(dura);
			continue;
		}
		const long long pos = deal_pos % buf_stage;
		cudaStream_t stream = streams[pos % NUM_STREAMS];
		push_and_filter(&state, input_buf[pos], input_len[pos], output_buf[pos], &(output_len[pos]), M,stream);		
		if (++deal_pos % 10==0)
			fprintf(stderr,"DealPos = %lld\n",(long long)deal_pos);
	}
	deal_finished = true;
	read_thread.join();
	write_thread.join();
	fprintf(stderr,"Deal Finished.\n");
    if (state.buffer)   	free(state.buffer);
    if (mem_ext_input) 	free(mem_ext_input);
    if (d_input) 			CHECK_CUDA(cudaFree(d_input));
    if (d_output) 		CHECK_CUDA(cudaFree(d_output));
	delete []input_buf;
	delete []output_buf;
   	delete []input_len;
	delete []output_len;
	
	 for (int i = 0; i < NUM_STREAMS; i++) {
        CHECK_CUDA(cudaStreamDestroy(streams[i]));
    }
	
    return 0;
}

4. 体会

从不熟悉CUDA,到使用CUDA完成了性能还乏善可陈的滤波器,用了4个小时。同时,通过询问DeepSeek如何理解stream流式处理、如何使用Nvidia Visual Profiler的优化指南,了解到很多CUDA相关的周边知识。可见,AI已经使得我这个50岁的人都能学到新东西,更别提年轻人了。现在是只有想不到,没有做不到。


网站公告

今日签到

点亮在社区的每一天
去签到