2025.03.31
一、英语
1.1 长难句分析
绝大部分长难句都是属于基本结构的长难句,即没有经过复杂结构变化的长难句。可以通过“两步分析法”进行分析:
- 断开——按照标点、连接词、分析主谓的顺序将长难句断开成简单句
- 简化——通过谓语动词,去掉扩展部分后找到句子核心
1.2 断开长难句
1.2.1 根据标点断开长难句
考研真题中,能够断开长难句的标点主要有:逗号、冒号和分号,偶尔会有破折号。
逗号
逗号需要与连接词一起断开长难句,无法单独断开或连接句子
- 例子:The idea is intuitively compelling, but it doesn’t explain how ideas actually spread.(2010, Reading Comprehension, Part A Text 3)
- The idea is intuitively compelling
- (, but) it doesn’t explain——逗号加连接词but断开句子
- (how) ideas actually spread.——连接词how断开句子
- 例子:The idea is intuitively compelling, but it doesn’t explain how ideas actually spread.(2010, Reading Comprehension, Part A Text 3)
特殊情况:在并列句中,连接词相同的情况下,可以省略连接词,将其替换成逗号,此时逗号等价于逗号+连接词,可以单独断开或连接句子;
- 例子:Birds chirped in the trees, squirrels darted across the path, a gentle breeze carried the scent of pine.(2015, Reading Comprehension, Part A Text 4)
- Birds chirped in the trees
- , squirrels darted across the path——这里的逗号等价于(, and),通过逗号断开句子
- , a gentle breeze carried the scent of pine.——这里的逗号等价于(, and),通过逗号断开句子
- 例子:Birds chirped in the trees, squirrels darted across the path, a gentle breeze carried the scent of pine.(2015, Reading Comprehension, Part A Text 4)
注意:当连接词连接的是单词、词组或者句子成分不完整时,无法根据逗号加连接词来断开句子
- 例子:The study highlights the importance of creativity, critical thinking, and collaboration in modern education.(2017, Reading Comprehension, Part A Text 1)
- 在这个句子中,因为逗号与连接词连接的不是一个完整的句子,所以无法根据逗号和连接词来断开句子。
- , critical thinking——这里是并列成分,省略了一个连接词(and),但是因为这里并列的不是一个完整的句子,所以不能断开
- 例子:The study highlights the importance of creativity, critical thinking, and collaboration in modern education.(2017, Reading Comprehension, Part A Text 1)
冒号
- 冒号一般不需要连接词,通常表示后面内容是对前面内容的进一步解释说明
- 例子:It’s hard to imagine that many people are dumb enough to want children just because Reese and Angelina make it look so glamorous: most adults understand that a baby is not a haircut.(2011, Reading Comprehension, Part A Text 4)
- It’s hard to imagine
- (that) many people are dumb enough to want children——连接词that断开
- (just because) Reese and Angelina make it look so glamorous——连接词just because断开
- ( : ) (:) (:) most adults understand——冒号断开
- (that) a baby is not a haircut——连接词that断开
- 例子:It’s hard to imagine that many people are dumb enough to want children just because Reese and Angelina make it look so glamorous: most adults understand that a baby is not a haircut.(2011, Reading Comprehension, Part A Text 4)
分号
- 分号表示并列关系,连接词可有可无(通常不需要连接词),分号前后通常是完整的句子,表示并列的多种情况。
- 例子:Modern science demands specialization; the depth of knowledge required in any field is overwhelming.(2014, Reading Comprehension, Part A Text 3)
- Modern science demands specialization
- ( ; ) (;) (;) the depth of knowledge required in any field is overwhelming.——通过分号断开句子
- 例子:Modern science demands specialization; the depth of knowledge required in any field is overwhelming.(2014, Reading Comprehension, Part A Text 3)
1.2.2 根据连接词断开长难句
连接词主要有三类:
- 并列连词:and, but, or……(用来连接并列句)
- 从属连词:because, if, while, although, as……(用来引导状语从句)
- 关系词:that, how, wh-(what, who, whom, whose……)
连接词是从句的开始,从句的结束通常有3个位置:
- 遇到标点结束
- 遇到下一个连接词结束
- 遇到第二个谓语动词结束
例子:Amazon.com…… also collects sales tax in every state that charges it, though third-party sellers who use the site don’t have to.(2019, Reading Comprehension, Part A Text 4)
- Amazon.com…… also collects sales tax in every state
- (that) charges it——连接词that引导定语从句,在逗号前断开
- (, though) third-party sellers (who use the site) don’t have to.
- 逗号和连接词though引导让步状语从句到句子结束
- 连接词who引导定语从句到下一个动词don’t前断开
- though……who两个连接词需要再第二个连接词前断开
二、数学
2.1 方程
2.1.1 一元n次方程及其解
一元二次方程: a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c = 0(a\neq0) ax2+bx+c=0(a=0)
求根公式: Δ = b 2 − 4 a c \Delta = b^2 - 4ac Δ=b2−4ac
一元二次方程的解:
x = { − b ± Δ 2 a , Δ > 0 − b 2 a , Δ = 0 − b ± i ∣ Δ ∣ 2 a , Δ < 0 x = \begin{cases} \displaystyle \frac{-b \pm \sqrt{\Delta}}{2a}, & \Delta > 0 \\ \displaystyle \frac{-b}{2a}, & \Delta = 0 \\ \displaystyle \frac{-b \pm \mathrm{i}\sqrt{|\Delta|}}{2a}, & \Delta < 0 \end{cases} x=⎩ ⎨ ⎧2a−b±Δ,2a−b,2a−b±i∣Δ∣,Δ>0Δ=0Δ<0
2.1.2 一元n次方程根与系数的关系
设一元 n n n 次方程为:
x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 = 0 x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0 xn+an−1xn−1+⋯+a1x+a0=0
其根为 ( r 1 , r 2 , … , r n ) ( r_1, r_2, \dots, r_n ) (r1,r2,…,rn),则根与系数的关系为:
根的和 : ∑ i = 1 n r i = − a n − 1 两两积和 : ∑ 1 ≤ i < j ≤ n r i r j = a n − 2 三三积和 : ∑ 1 ≤ i < j < k ≤ n r i r j r k = − a n − 3 ⋮ 根的积 : ∏ i = 1 n r i = ( − 1 ) n a 0 \begin{align*} \text{根的和} &: \sum_{i=1}^n r_i = -a_{n-1} \\ \text{两两积和} &: \sum_{1 \leq i < j \leq n} r_ir_j = a_{n-2} \\ \text{三三积和} &: \sum_{1 \leq i < j < k \leq n} r_ir_jr_k = -a_{n-3} \\ &\;\;\vdots \\ \text{根的积} &: \prod_{i=1}^n r_i = (-1)^n a_0 \end{align*} 根的和两两积和三三积和根的积:i=1∑nri=−an−1:1≤i<j≤n∑rirj=an−2:1≤i<j<k≤n∑rirjrk=−an−3⋮:i=1∏nri=(−1)na0
常考一元二次方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2 + bx + c = 0(a\neq0) ax2+bx+c=0(a=0):
一元二次方程的两根为 x 1 , x 2 x_1, x_2 x1,x2 ,则
{ r 1 + r 2 = − b a , r 1 r 2 = c a . \begin{cases} r_1 + r_2 &= -\frac{b}{a}, \\ r_1 r_2 &= \frac{c}{a}. \end{cases} {r1+r2r1r2=−ab,=ac.
2.2 不等式
2.2.1 不等式的三条基本性质
传递性(Transitivity)
a > b 且 b > c ⟹ a > c a > b \quad \text{且} \quad b > c \quad \implies \quad a > c a>b且b>c⟹a>c
加减法保序性(Addition/Subtraction Invariance)
a > b ⟹ a + c > b + c ( ∀ c ∈ R ) a > b \quad \implies \quad a + c > b + c \quad (\forall c \in \mathbb{R}) a>b⟹a+c>b+c(∀c∈R)
乘除法方向性(Multiplication/Division Directionality)
{ c > 0 ⟹ a ⋅ c > b ⋅ c , c < 0 ⟹ a ⋅ c < b ⋅ c . \begin{cases} \displaystyle c > 0 \implies a \cdot c > b \cdot c, \\ \displaystyle c < 0 \implies a \cdot c < b \cdot c. \end{cases} {c>0⟹a⋅c>b⋅c,c<0⟹a⋅c<b⋅c.
2.2.2 几种基本不等式
绝对值不等式
∣ x ∣ < a ⟺ − a < x < a ( a > 0 ) ∣ x ∣ > a ⟺ x < − a 或 x > a ( a ≥ 0 ) b > ∣ x ∣ ≥ a ⟺ b > x ≥ a 或 − b < x ≤ − a ( b > a > 0 ) \begin{align*} |x| < a &\iff -a < x < a \quad (a > 0) \\ |x| > a &\iff x < -a \ \text{或} \ x > a \quad (a \geq 0)\\ b > |x| \geq a &\iff b > x \geq a \ \text{或} \ -b < x \leq -a (b > a > 0) \end{align*} ∣x∣<a∣x∣>ab>∣x∣≥a⟺−a<x<a(a>0)⟺x<−a 或 x>a(a≥0)⟺b>x≥a 或 −b<x≤−a(b>a>0)复合绝对值不等式
∣ a x + b ∣ ≥ c ⟺ − c ≥ a x + b 或 a x + b ≥ c ( c > 0 ) ∣ a x + b ∣ ≤ c ⟺ − c ≤ a x + b ≤ c ( c > 0 ) |ax + b| \geq c \iff -c \geq ax + b\ \text {或}\ ax + b\geq c \quad (c > 0)\\ |ax + b| \leq c \iff -c \leq ax + b \leq c \quad (c > 0) ∣ax+b∣≥c⟺−c≥ax+b 或 ax+b≥c(c>0)∣ax+b∣≤c⟺−c≤ax+b≤c(c>0)均值不等式
n ∑ i = 1 n 1 x i ⏟ 调和平均 (HM) ≤ ( ∏ i = 1 n x i ) 1 / n ⏟ 几何平均 (GM) ≤ 1 n ∑ i = 1 n x i ⏟ 算术平均 (AM) ≤ 1 n ∑ i = 1 n x i 2 ⏟ 均方根 (RMS) \underbrace{\frac{n}{\sum_{i=1}^n \frac{1}{x_i}}}_{\text{调和平均 (HM)}} \leq \underbrace{\left( \prod_{i=1}^n x_i \right)^{1/n}}_{\text{几何平均 (GM)}} \leq \underbrace{\frac{1}{n} \sum_{i=1}^n x_i}_{\text{算术平均 (AM)}} \leq \underbrace{\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}}_{\text{均方根 (RMS)}} 调和平均 (HM) ∑i=1nxi1n≤几何平均 (GM) (i=1∏nxi)1/n≤算术平均 (AM) n1i=1∑nxi≤均方根 (RMS) n1i=1∑nxi2
在均值不等式中,我们常运用的是数a与数b之间的关系
2 1 a + 1 b ⏟ 调和平均 (HM) ≤ a b ⏟ 几何平均 (GM) ≤ a + b 2 ⏟ 算术平均 (AM) ≤ a 2 + b 2 2 ⏟ 均方根 (RMS) \underbrace{\frac{2}{\frac{1}a + \frac{1}b}}_{\text{调和平均 (HM)}} \leq \underbrace{\sqrt{ ab}}_{\text{几何平均 (GM)}} \leq \underbrace{\frac{a + b}2}_{\text{算术平均 (AM)}} \leq \underbrace{\sqrt{\frac{a^2 + b^2}{2}}}_{\text{均方根 (RMS)}} 调和平均 (HM) a1+b12≤几何平均 (GM) ab≤算术平均 (AM) 2a+b≤均方根 (RMS) 2a2+b2柯西-施瓦茨不等式
( ∑ i = 1 n a i b i ) 2 ≤ ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) \left( \sum_{i=1}^n a_i b_i \right)^2 \leq \left( \sum_{i=1}^n a_i^2 \right) \left( \sum_{i=1}^n b_i^2 \right) (i=1∑naibi)2≤(i=1∑nai2)(i=1∑nbi2)
在柯西不等式中,常考:
( a 1 b 1 + a 2 b 2 ) 2 ≤ ( a 1 2 + a 2 2 ) ( b 1 2 + b 2 2 ) \left( a_1b_1 + a_2b_2 \right)^2 \leq \left( a_1^2 + a_2^2 \right) \left( b_1^2 + b_2^2 \right) (a1b1+a2b2)2≤(a12+a22)(b12+b22)三角不等式:
∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b|| \leq |a + b| \leq |a| + |b| ∣∣a∣−∣b∣∣≤∣a+b∣≤∣a∣+∣b∣
在三角不等式中:
∣ ∣ a ∣ − ∣ b ∣ ∣ = ∣ a + b ∣ ⟺ a ⋅ b ≤ 0 ∣ a + b ∣ = ∣ a ∣ + ∣ b ∣ ⟺ a ⋅ b ≥ 0 ||a| - |b|| = |a + b| \iff a \cdot b \leq 0 \\ |a + b| = |a| + |b| \iff a \cdot b \geq 0 ∣∣a∣−∣b∣∣=∣a+b∣⟺a⋅b≤0∣a+b∣=∣a∣+∣b∣⟺a⋅b≥0伯努利不等式
( 1 + x ) n ≥ 1 + n x ( x ≥ − 1 , n ∈ N ∗ ) (1 + x)^n \geq 1 + nx \quad (x \geq -1, \, n \in \mathbb{N}^*) (1+x)n≥1+nx(x≥−1,n∈N∗)排序不等式
∑ i = 1 n a i b i ≥ ∑ i = 1 n a i c i ≥ ∑ i = 1 n a i b n − i + 1 ( a 1 ≤ ⋯ ≤ a n , b 1 ≤ ⋯ ≤ b n ) \sum_{i=1}^n a_i b_i \geq \sum_{i=1}^n a_i c_i \geq \sum_{i=1}^n a_i b_{n-i+1} \quad (a_1 \leq \dots \leq a_n, \, b_1 \leq \dots \leq b_n) i=1∑naibi≥i=1∑naici≥i=1∑naibn−i+1(a1≤⋯≤an,b1≤⋯≤bn)切比雪夫不等式
1 n ∑ i = 1 n a i b i ≥ ( 1 n ∑ i = 1 n a i ) ( 1 n ∑ i = 1 n b i ) ( a 1 ≤ ⋯ ≤ a n , b 1 ≤ ⋯ ≤ b n ) \frac{1}{n}\sum_{i=1}^n a_i b_i \geq \left( \frac{1}{n}\sum_{i=1}^n a_i \right) \left( \frac{1}{n}\sum_{i=1}^n b_i \right) \quad (a_1 \leq \dots \leq a_n, \, b_1 \leq \dots \leq b_n) n1i=1∑naibi≥(n1i=1∑nai)(n1i=1∑nbi)(a1≤⋯≤an,b1≤⋯≤bn)幂平均不等式
( 1 n ∑ i = 1 n a i p ) 1 / p ≥ ( 1 n ∑ i = 1 n a i q ) 1 / q ( p ≥ q > 0 ) \left( \frac{1}{n} \sum_{i=1}^n a_i^p \right)^{1/p} \geq \left( \frac{1}{n} \sum_{i=1}^n a_i^q \right)^{1/q} \quad (p \geq q > 0) (n1i=1∑naip)1/p≥(n1i=1∑naiq)1/q(p≥q>0)
2.2.3 二次函数的不等问题
- a x 2 + b x + c > 0 ( a > 0 ) , a x 2 + b x + c < 0 ( a > 0 ) ax^2 + bx + c > 0(a > 0) , ax^2 + bx + c < 0(a > 0) ax2+bx+c>0(a>0),ax2+bx+c<0(a>0) 与一元二次方程、二次函数的关系及其解:
当 Δ > 0 \Delta > 0 Δ>0 时:
- a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2 + bx + c = 0(a \neq 0) ax2+bx+c=0(a=0)
- 有两个不相等实根: x 1 , 2 = − b ± Δ 2 a x_{1,2} = {\frac{-b \pm \sqrt \Delta}{2a}} x1,2=2a−b±Δ
- a x 2 + b x + c > 0 ( a > 0 ) ax^2 + bx + c > 0(a > 0) ax2+bx+c>0(a>0)
- 解集为 { x ∣ x < x 1 或 x < x 2 } \{x|x<x_1 或 x < x_2\} {x∣x<x1或x<x2}
- a x 2 + b x + c < 0 ( a > 0 ) ax^2 + bx + c < 0(a > 0) ax2+bx+c<0(a>0)
- 解集为 { x ∣ x 1 < x < x 2 } \{x|x_1 < x < x_2\} {x∣x1<x<x2}
当 Δ = 0 \Delta = 0 Δ=0 时:
- a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2 + bx + c = 0(a \neq 0) ax2+bx+c=0(a=0)
- 有两个不相等实根: x 1 , 2 = − b 2 a x_{1,2} = {-\frac{b}{2a}} x1,2=−2ab
- a x 2 + b x + c > 0 ( a > 0 ) ax^2 + bx + c > 0(a > 0) ax2+bx+c>0(a>0)
- 解集为 { x ∣ x ∈ R 且 x ≠ − b 2 a } \{x|x\in R 且 x \neq {-\frac{b}{2a}}\} {x∣x∈R且x=−2ab}
- a x 2 + b x + c < 0 ( a > 0 ) ax^2 + bx + c < 0(a > 0) ax2+bx+c<0(a>0)
- 解集为 ∅ \varnothing ∅
当 Δ < 0 \Delta < 0 Δ<0 时:
- a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2 + bx + c = 0(a \neq 0) ax2+bx+c=0(a=0)
- 无实根
- a x 2 + b x + c > 0 ( a > 0 ) ax^2 + bx + c > 0(a > 0) ax2+bx+c>0(a>0)
- 解集为 R R R
- a x 2 + b x + c < 0 ( a > 0 ) ax^2 + bx + c < 0(a > 0) ax2+bx+c<0(a>0)
- 解集为 ∅ \varnothing ∅
- 一元二次方程 a x 2 + b x + c = 0 ( a > 0 ) ax^2 + bx + c = 0(a > 0) ax2+bx+c=0(a>0) 的两个实根为 x 1 , x 2 x_1, x_2 x1,x2,对应的二次函数为 f ( x ) = a x 2 + b x + c ( a > 0 ) f(x) = ax^2 + bx + c(a > 0) f(x)=ax2+bx+c(a>0),其根的分布情况为:
x 1 < x 2 < k x_1 < x_2 < k x1<x2<k其充要条件为:
{ Δ > 0 f ( k ) > 0 − b 2 a < k . \begin{cases} \displaystyle \Delta > 0\\ \displaystyle f(k) > 0 \\ \displaystyle {-\frac{b}{2a}} < k. \end{cases} ⎩ ⎨ ⎧Δ>0f(k)>0−2ab<k.k < x 1 < x 2 k < x_1 < x_2 k<x1<x2其充要条件为:
{ Δ > 0 f ( k ) > 0 − b 2 a > k . \begin{cases} \displaystyle \Delta > 0\\ \displaystyle f(k) > 0 \\ \displaystyle {-\frac{b}{2a}} > k. \end{cases} ⎩ ⎨ ⎧Δ>0f(k)>0−2ab>k.x 1 < k < x 2 x_1 < k < x_2 x1<k<x2其充要条件为:
f ( k ) < 0 \displaystyle f(k) < 0 f(k)<0x 1 , x 2 ∈ ( k 1 , k 2 ) x_1, x_2 \in (k_1, k_2) x1,x2∈(k1,k2)其充要条件为:
{ Δ ≥ 0 f ( k 1 ) > 0 f ( k 2 ) > 0 k 1 < − b 2 a < k 2 . \begin{cases} \displaystyle \Delta \geq 0\\ \displaystyle f(k_1) > 0 \\ \displaystyle f(k_2) > 0 \\ \displaystyle k_1 < {-\frac{b}{2a}} < k_2. \end{cases} ⎩ ⎨ ⎧Δ≥0f(k1)>0f(k2)>0k1<−2ab<k2.x 1 , x 2 x_1, x_2 x1,x2 有且仅有一个在 ( k 1 , k 2 ) (k_1, k_2) (k1,k2) 内其充要条件为:
{ f ( k 1 ) = 0 k 1 < − b 2 a < k 1 + k 2 2 或 { f ( k 2 ) = 0 k 1 + k 2 2 < − b 2 a < k 2 \begin{cases} \displaystyle f(k_1) = 0 \\ \displaystyle k_1 < {-\frac{b}{2a}} < {\frac{k_1 + k_2}{2}} \end{cases} \ 或\\ \begin{cases} \displaystyle f(k_2) = 0 \\ \displaystyle {\frac{k_1 + k_2}{2}} < {-\frac{b}{2a}} < k_2 \end{cases} ⎩ ⎨ ⎧f(k1)=0k1<−2ab<2k1+k2 或⎩ ⎨ ⎧f(k2)=02k1+k2<−2ab<k2
- 二次不等式在一个区间上( R R R 的子集)恒成立的条件
设二次不等式 a x 2 + b x + c > 0 ( a ≠ 0 ) ax^2 + bx + c > 0(a \neq 0) ax2+bx+c>0(a=0) 在区间 ( k 1 , k 2 ) (k_1, k_2) (k1,k2) 上恒成立 ( k 1 , k 2 为常数 ) (k_1, k_2 为常数) (k1,k2为常数)
二次不等式对应的二次函数为
f ( x ) = a x 2 + b x + c ( a ≠ 0 ) f(x) = ax^2 + bx + c(a \neq 0) f(x)=ax2+bx+c(a=0)
当 a < 0 a < 0 a<0 时 f ( k 1 ) > 0 且 f ( k 2 ) > 0 f(k_1) > 0 且 f(k_2) > 0 f(k1)>0且f(k2)>0
当 a > 0 a > 0 a>0 时 Δ < 0 \Delta < 0 Δ<0 或
{ f ( k 1 ) > 0 − b 2 a ≤ k 1 或 { f ( k 2 ) > 0 − b 2 a ≥ k 2 \begin{cases} \displaystyle f(k_1) > 0 \\ \displaystyle {-\frac{b}{2a}} \leq k_1 \end{cases}\ 或\\ \begin{cases} \displaystyle f(k_2) > 0 \\ \displaystyle {-\frac{b}{2a}} \geq k_2 \end{cases} ⎩
⎨
⎧f(k1)>0−2ab≤k1 或⎩
⎨
⎧f(k2)>0−2ab≥k2
- 二次函数在闭区间上的最值
设二次函数 f ( x ) = a x 2 + b x + c ( a > 0 ) , x ∈ [ m , n ] f(x) = ax^2 + bx + c(a > 0),x \in [m, n] f(x)=ax2+bx+c(a>0),x∈[m,n]
- 当 m ≤ − b 2 a ≤ n m \leq {-\frac{b}{2a}} \leq n m≤−2ab≤n时,
- y m i n = f ( − b 2 a ) = 4 a c − b 2 4 a y_{min} = f({-\frac{b}{2a}}) = {\frac{4ac - b^2}{4a}} ymin=f(−2ab)=4a4ac−b2
- y m a x = m a x { f ( m ) , f ( n ) } y_{max} = max\{f(m), f(n)\} ymax=max{f(m),f(n)}
- 当 − b 2 a < m {-\frac{b}{2a}} < m −2ab<m时,
- y m i n = f ( m ) y_{min} = f(m) ymin=f(m)
- y m a x = f ( n ) y_{max} = f(n) ymax=f(n)
- 当 − b 2 a > n {-\frac{b}{2a}} > n −2ab>n时,
- y m i n = f ( n ) y_{min} = f(n) ymin=f(n)
- y m a x = f ( m ) y_{max} = f(m) ymax=f(m)
2.3 例题
证明: x 1 2 + ( x 2 − x 1 ) 2 + ( x 3 − x 2 ) 2 + … … + ( a − x n − 1 ) 2 ≥ a 2 n ( n ≥ 2 ) x_1^2 + (x_2 - x_1)^2 + (x_3 - x_2)^2 + ……+(a - x_{n-1})^2 \geq {\frac{a^2}{n}}(n \geq 2) x12+(x2−x1)2+(x3−x2)2+……+(a−xn−1)2≥na2(n≥2)
解法一:柯西不等式
根据柯西不等式:
( a 1 2 + a 2 2 + … … a n 2 ) ( b 1 2 + b 2 2 + … … b n 2 ) ≥ ( a 1 b 1 + a 2 b 2 + … … + a n b n ) 2 (a_1^2 + a_2^2 + ……a_n^2)(b_1^2 + b_2^2 + ……b_n^2) \geq (a_1b_1 + a_2b_2 + ……+a_nb_n)^2 (a12+a22+……an2)(b12+b22+……bn2)≥(a1b1+a2b2+……+anbn)2
得:
x 1 2 + ( x 2 − x 1 ) 2 + ( x 3 − x 2 ) 2 + … … + ( a − x n − 1 ) 2 x_1^2 + (x_2 - x_1)^2 + (x_3 - x_2)^2 + ……+(a - x_{n-1})^2 x12+(x2−x1)2+(x3−x2)2+……+(a−xn−1)2
= 1 n ( 1 2 + 1 2 + … … + 1 2 ) ( x 1 2 + ( x 2 − x 1 ) 2 + ( x 3 − x 2 ) 2 + … … + ( a − x n − 1 ) 2 ) = {\frac{1}{n}}(1^2 + 1^2 + …… + 1^2)(x_1^2 + (x_2 - x_1)^2 + (x_3 - x_2)^2 + ……+(a - x_{n-1})^2) =n1(12+12+……+12)(x12+(x2−x1)2+(x3−x2)2+……+(a−xn−1)2)
≥ 1 n ( 1 × x 1 + 1 × ( x 2 − x 1 ) + … … + 1 × ( a − x n − 1 ) ) 2 \geq {\frac{1}{n}}(1×x_1 + 1 × (x_2 - x_1) + ……+1 × (a - x_{n-1}))^2 ≥n1(1×x1+1×(x2−x1)+……+1×(a−xn−1))2
= 1 n ( x 1 + x 2 − x 1 + … … + a − x n − 1 ) 2 = {\frac{1}{n}}(x_1 + x_2 - x_1 + …… + a - x_{n - 1})^2 =n1(x1+x2−x1+……+a−xn−1)2
= a 2 n = {\frac{a^2}{n}} =na2
证明完毕
解法二:平方根与算术平均
令 z 1 = x 1 , z 2 = x 2 − x 1 , … … , z n = a − x n − 1 z1 = x_1, z_2 = x_2 - x_1, ……, z_n = a - x_{n-1} z1=x1,z2=x2−x1,……,zn=a−xn−1,可得:
z 1 2 + z 2 2 + … … + z n 2 z_1^2 + z_2^2 + ……+z_n^2 z12+z22+……+zn2
= 1 n ( z 1 2 + z 2 2 + … … + z n 2 ) ⋅ n ={\frac{1}{n}}(z_1^2 + z_2^2 + ……+z_n^2) \cdot n =n1(z12+z22+……+zn2)⋅n
≥ ( z 1 + z 2 + … … + z n n ) 2 ⋅ n \geq (\frac{z_1 + z_2 + …… + z_n}{n})^2 \cdot n ≥(nz1+z2+……+zn)2⋅n
= ( z 1 + z 2 + … … + z n ) 2 n =\frac{(z_1 + z_2 + …… + z_n)^2}{n} =n(z1+z2+……+zn)2
= ( x 1 + x 2 − x 1 + … … + a − x n − 1 ) 2 n =\frac{(x_1 + x_2 - x_1 + …… + a - x_{n-1})^2}{n} =n(x1+x2−x1+……+a−xn−1)2
= a 2 n =\frac{a^2}{n} =na2
证明完毕。
个人理解
这题主要是采用了——凑的思想:
- 将我们不熟悉的内容凑成我们熟悉的内容
就比如方法一种, 原式 = 原式 × 1 原式 = 原式 × 1 原式=原式×1,并且 n / n = 1 n / n = 1 n/n=1,因此我们不妨直接将原式改写为:
原式 × n n \frac{原式 × n}{n} n原式×n,而n是由n个1相加而来, 1 2 = 1 1^2 = 1 12=1,因此我们便凑出了柯西不等式的形式:
( a 1 2 + a 2 2 + … … + a n 2 ) ( b 1 2 + b 2 2 + … … + b n 2 ) n \frac{(a_1^2 + a_2^2 + …… + a_n^2)(b_1^2 + b_2^2 + …… + b_n^2)}{n} n(a12+a22+……+an2)(b12+b22+……+bn2)
此时我们就可以通过柯西不等式求解。
而方法二同样也是凑,仔细观察原式我们不难发现,当我们将一个平方看做一个整体时,原式就变成了:
( x 1 − 0 ) 2 + ( x 2 − x 1 ) 2 + … … + ( a − x n − 1 ) 2 (x_1 - 0)^2 + (x_2 - x_1)^2 + …… + (a - x{n-1})^2 (x1−0)2+(x2−x1)2+……+(a−xn−1)2
此时我们就可以将每一项都看做一个整体,借助换元法,通过辅助变量 z i ( 1 ≤ i ≤ n ) z_i(1 \leq i \leq n) zi(1≤i≤n),将原式替换成平方和的形式,
z 1 2 + z 2 2 + … … + z n 2 z_1^2 + z_2^2 + …… + z_n^2 z12+z22+……+zn2
这样我们就能够借助平方根与算法平均值之间的关系进行放缩完成求解了。
小结
在不等式问题中,我们需要活用基础的不等式来帮助我们解题。
当我们遇到不熟悉的问题时,我们可以通过凑项、换元等方式让其变成我们熟悉的问题。