做法一:迭代法,只需要记录一下前面和后面的节点即可
这里没有null 要么是NULL 要么是nullptr
class Solution {
public:
ListNode* reverseList(ListNode* head) {
ListNode* prev=NULL;
ListNode* cur=head;
while(cur!=NULL)
{
ListNode* next=cur->next;
cur->next=prev;
prev=cur;
cur=next;
}
return prev;
}
};
做法二。递归法
class Solution {
public:
ListNode* reverseList(ListNode* head) {
if(!head||!head->next)
{
return head;
}
ListNode* newhead=reverseList(head->next);
head->next->next=head;
head->next=nullptr;
return newhead;
}
};
做法一:无脑暴力法,先遍历一遍顺便翻转链表,然后再反着遍历一遍就可以了。
写完才发现,可以直接遍历数组,没有必要反转链表
class Solution {
public:
bool isPalindrome(ListNode* head) {
queue<int> ans;
ListNode*prev=nullptr;
ListNode*cur=head;
while(cur!=nullptr)
{
ListNode*nextnode=cur->next;
cur->next=prev;
prev=cur;
cur=nextnode;
ans.emplace(prev->val);
}
while(prev!=nullptr)
{
if(prev->val!=ans.front())return false;
ans.pop();
prev=prev->next;
}
return true;
}
};
做法二:真的太巧妙了这个想法,利用递归。这个就感觉很深入递归的本质了。先一层层往下递归,如果最后一层和保存在外部的变量值相同,那么就把fp=fp->next。同时递归返回上一层,相当于倒退。但空间开的更大了没办法
class Solution {
ListNode* fp;
public:
bool reverselist(ListNode* cur)
{
if(cur!=nullptr)
{
if(!reverselist(cur->next))return false;
if(cur->val!=fp->val)return false;
fp=fp->next;
}
return true;
}
bool isPalindrome(ListNode* head) {
fp=head;
return reverselist(fp);
}
};
做法三:只需要O(1)空间。首先利用快慢指针,找到中间部分的指针,然后把后半段链表翻转。接着两边同时遍历直到后半段指针为nullptr即可
class Solution {
public:
bool isPalindrome(ListNode* head) {
if(head==nullptr)return true;
ListNode *fp=endof(head);
ListNode *sp=reverselist(fp->next);
ListNode* p1=head;
ListNode *p2=sp;
bool result=true;
while(result&&p2!=nullptr)
{
if(p1->val!=p2->val)
{
result=false;
break;
}
p1=p1->next;
p2=p2->next;
}
return result;
}
ListNode* reverselist(ListNode* head)
{
ListNode* prev=nullptr;
ListNode* cur=head;
while(cur!=nullptr)
{
ListNode* nextcur=cur->next;
cur->next=prev;
prev=cur;
cur=nextcur;
}
return prev;
}
ListNode* endof(ListNode *head)
{
ListNode* fast=head;
ListNode* slow=head;
while(fast->next!=nullptr&&fast->next->next!=nullptr)
{
fast=fast->next->next;
slow=slow->next;
}
return slow;
}
};
做法一:常规开哈希,遍历一遍即可
class Solution {
public:
bool hasCycle(ListNode *head) {
unordered_set<ListNode*> mp;
while(head!=nullptr)
{
if(mp.count(head))return true;
mp.insert(head);
head=head->next;
}
return false;
}
};
做法二;十分巧妙地快慢指针。快指针走两步,慢指针走一步。注意初始的时候要先特判head为空和head->next为空。并且因为循环的终止条件是两者相等,所以要初始的时候让快指针处于head->next。如果有环,一定会套圈的
class Solution {
public:
bool hasCycle(ListNode *head) {
if(head==nullptr||head->next==nullptr)return false;
ListNode* slow=head;
ListNode* fast=head->next;
while(slow!=fast)
{
if(fast==nullptr||fast->next==nullptr)return false;
slow=slow->next;
fast=fast->next->next;
}
return true;
}
};
class Solution {
public:
bool hasCycle(ListNode *head) {
if(head==nullptr||head->next==nullptr)return false;
ListNode* slow=head;
ListNode* fast=head;
while(fast!=nullptr)
{
slow=slow->next;
if(fast->next==nullptr)return false;
fast=fast->next->next;
if(slow==fast)return true;
}
return false;
}
};
做法一:依旧哈希
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
unordered_set<ListNode*>mp;
while(head!=nullptr)
{
if(mp.count(head))return head;
mp.insert(head);
head=head->next;
}
return nullptr;
}
};
做法二:使用快慢指针
在这里代码一定要注意 要判断fast->next是否为nullptr
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* slow=head,*fast=head;
while(fast!=nullptr)
{
slow=slow->next;
if(fast->next==nullptr)return nullptr;
fast=fast->next->next;
if(slow==fast)
{
ListNode* cur=head;
while(cur!=slow)
{
cur=cur->next;
slow=slow->next;
}
return cur;
}
}
return nullptr;
}
};
做法一:最容易想到的迭代做法,其实就和合并两个有序数组是一个思路
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
ListNode* prehead=new ListNode(-1);
ListNode*prev=prehead;
while(list1!=nullptr&&list2!=nullptr)
{
if(list1->val<list2->val)
{
prev->next=list1;
list1=list1->next;
}
else
{
prev->next=list2;
list2=list2->next;
}
prev=prev->next;
}
prev->next=list1==nullptr?list2:list1;
return prehead->next;
}
};
做法二:优雅的递归,虽然空间不太优雅,但写起来很好
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
if(list1==nullptr)
{
return list2;
}
else if(list2==nullptr)
{
return list1;
}
else if(list1->val<list2->val)
{
list1->next=mergeTwoLists(list1->next,list2);
return list1;
}
else{
list2->next=mergeTwoLists(list1,list2->next);
return list2;
}
}
};
做法:其实就和当初学的高精度加法大差不差,从最低位开始,由于没有办法知道链表的长度,所以循环就一直循环到两个链表都为nullptr才结束。如果其中一方为空,那么就不移动,并且设为0.最后不要忘记进位也要设节点
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode *head=nullptr,*tail=nullptr;
int carry=0;
while(l1||l2)
{
int n1=l1?l1->val:0;
int n2=l2?l2->val:0;
int sum=n1+n2+carry;
if(!head)
{
head=tail=new ListNode(sum%10);
}
else
{
tail->next=new ListNode(sum%10);
tail=tail->next;
}
carry=sum/10;
if(l1)l1=l1->next;
if(l2)l2=l2->next;
if(carry)tail->next=new ListNode(carry);
}
return head;
}
};
做法一:首先,这种题因为有可能删除头节点,所以必须创建一个哨兵节点指向头节点,并且要记得new之后一定要有delete(释放指针所指向区域的内存),不然运行时间会有差异。然后用vector或者用stack存一下节点就可以了
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
if(head->next==nullptr)return nullptr;
ListNode *prenode=new ListNode(-1);
prenode->next=head;
vector<ListNode*> vec;
ListNode* cur=head;
vec.emplace_back(prenode);
while(cur!=nullptr)
{
vec.emplace_back(cur);
cur=cur->next;
}
ListNode* node=vec[vec.size()-n-1];
node->next=node->next->next;
ListNode* ans=prenode->next;
delete prenode;
return ans;
}
};
做法二:使用双指针,快慢指针在链表中十分重要。fast比slow快n个身位,这样当快指针为nullptr的时候,slow指针就指向要被删除的节点,所以可以把slow指向哨兵节点,这样就能做了。
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* pre=new ListNode(0,head);
ListNode* fast=head;
ListNode* slow=pre;
while(n--)fast=fast->next;
while(fast)
{
fast=fast->next;
slow=slow->next;
}
slow->next=slow->next->next;
ListNode* ans=pre->next;
delete pre;
return ans;
}
};
当然也可以遍历两次,这里就不给出代码了,比较简单
做法一:迭代,还是得哨兵节点,没有的话不太好做。
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
ListNode* pre=new ListNode(0);
pre->next=head;
ListNode* temp=pre;
while(temp->next!=nullptr&&temp->next->next!=nullptr)
{
ListNode* node1=temp->next;
ListNode* node2=temp->next->next;
temp->next=node2;
node1->next=node2->next;
node2->next=node1;
temp=node1;
}
ListNode *ans=pre->next;
delete pre;
return ans;
}
};
做法二:递归,简洁优雅
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
if(head==nullptr||head->next==nullptr)return head;
ListNode* newhead=head->next;
head->next=swapPairs(newhead->next);
newhead->next=head;
return newhead;
}
};
做法:一组组翻转链表即可,还是要创建哨兵,并且要判断是否剩余还有k个能进行翻转
class Solution {
public:
pair<ListNode*,ListNode*>reverselist(ListNode* head,ListNode* tail)
{
ListNode* prev=nullptr;
ListNode* p=head;
while(prev!=tail)
{
ListNode* nex=p->next;
p->next=prev;
prev=p;
p=nex;
}
return {tail,head};
}
ListNode* reverseKGroup(ListNode* head, int k) {
ListNode* pre=new ListNode(0,head);
ListNode *prev=pre;
while(head)
{
ListNode* tail=prev;
for(int i=0;i<k;i++)
{
tail=tail->next;
if(!tail)return pre->next;
}
ListNode* nex=tail->next;
pair<ListNode*,ListNode*>result=reverselist(head,tail);
head=result.first;
tail=result.second;
prev->next=head;
tail->next=nex;
prev=tail;
head=tail->next;
}
return pre->next;
}
};
做法一:哈希+递归。有一个问题就是,如果random回去了,那么如何识别,自家random呢。所以可以用哈希表在head和newhead两个链表间做一个映射。如果哈希映射存在,那么说明random到的节点不会有后续变化了,否则,要创造一个节点,并且继续往下递归。
class Solution {
public:
unordered_map<Node*,Node*> mp;
Node* copyRandomList(Node* head) {
if(head==nullptr)return nullptr;
if(!mp.count(head))
{
Node* newhead=new Node(head->val);
mp[head]=newhead;
newhead->next=copyRandomList(head->next);
newhead->random=copyRandomList(head->random);
}
return mp[head];
}
};
做法二:不用哈希表,而是在原本的链表之间插入节点
class Solution {
public:
Node* copyRandomList(Node* head) {
if (head == nullptr) {
return nullptr;
}
for (Node* node = head; node != nullptr; node = node->next->next) {
Node* nodeNew = new Node(node->val);
nodeNew->next = node->next;
node->next = nodeNew;
}
for (Node* node = head; node != nullptr; node = node->next->next) {
Node* nodeNew = node->next;
nodeNew->random = (node->random != nullptr) ? node->random->next : nullptr;
}
Node* headNew = head->next;
for (Node* node = head; node != nullptr; node = node->next) {
Node* nodeNew = node->next;
node->next = node->next->next;
nodeNew->next = (nodeNew->next != nullptr) ? nodeNew->next->next : nullptr;
}
return headNew;
}
};
做法一:归并排序
class Solution {
public:
ListNode* sortList(ListNode* head) {
return sortList(head,nullptr);
}
ListNode* sortList(ListNode* head,ListNode* tail)
{
if(head==nullptr)return head;
if(head->next==tail)
{
head->next=nullptr;
return head;
}
ListNode* slow=head,*fast=head;
while(fast!=tail)
{
slow=slow->next;
fast=fast->next;
if(fast!=tail)fast=fast->next;
}
ListNode* mid=slow;
return merge(sortList(head,mid),sortList(mid,tail));
}
ListNode* merge(ListNode* head1,ListNode* head2)
{
ListNode* prev=new ListNode(0);
ListNode* temp=prev,*temp1=head1,*temp2=head2;
while(temp1!=nullptr&&temp2!=nullptr)
{
if(temp1->val<=temp2->val)
{
temp->next=temp1;
temp1=temp1->next;
}
else
{
temp->next=temp2;
temp2=temp2->next;
}
temp=temp->next;
}
if(temp1!=nullptr)temp->next=temp1;
else if(temp2!=nullptr)temp->next=temp2;
ListNode* ans=prev->next;
delete prev;
return ans;
}
};
做法一:一个个合并过去即可
class Solution {
public:
ListNode* merge(ListNode* l1,ListNode* l2)
{
if(l1==nullptr)return l2;
if(l2==nullptr)return l1;
ListNode* prev=new ListNode(0),*cur=prev;
while(l1!=nullptr&&l2!=nullptr)
{
if(l1->val<l2->val)
{
cur->next=l1;
l1=l1->next;
}
else
{
cur->next=l2;
l2=l2->next;
}
cur=cur->next;
}
cur->next=l1==nullptr?l2:l1;
cur=prev->next;
delete prev;
return cur;
}
ListNode* mergeKLists(vector<ListNode*>& lists) {
ListNode *ans=nullptr;
for(int i=0;i<lists.size();i++)ans=merge(ans,lists[i]);
return ans;
}
};
做法二:归并合并
做法三:优先队列
class Solution {
public:
struct node
{
int val;
ListNode *ptr;
};
struct cmp
{
bool operator()(const node& a,const node& b)const{
return a.val>b.val;
}
};
priority_queue<node,vector<node>,cmp> q;
ListNode* mergeKLists(vector<ListNode*>& lists) {
for(auto no:lists)
{
if(no)q.push({no->val,no});
}
ListNode *prev=new ListNode(0),*cur=prev;
while(!q.empty())
{
auto f=q.top();
q.pop();
cur->next=f.ptr;
cur=cur->next;
if(f.ptr->next!=nullptr)q.push({f.ptr->next->val,f.ptr->next});
}
cur=prev->next;
delete prev;
return cur;
}
};
做法:有点麻烦,首先需要建立哈希映射。其次需要建立一个双向链表。链表的节点就是自定义类,,里面存储了key和对应的value,key可以映射到这个节点上面。LRU通过链表中位置来踢出
struct DLinkedNode
{
int key,value;
DLinkedNode* prev;
DLinkedNode* next;
DLinkedNode():key(0),value(0),prev(nullptr),next(nullptr){}
DLinkedNode(int key,int value):key(key),value(value),prev(nullptr),next(nullptr){}
};
class LRUCache {
public:
unordered_map<int,DLinkedNode*> cache;
DLinkedNode* head;
DLinkedNode* tail;
int size;
int capacity;
void addtohead(DLinkedNode* node)
{
node->prev=head;
node->next=head->next;
head->next->prev=node;
head->next=node;
}
void removenode(DLinkedNode* node)
{
node->prev->next=node->next;
node->next->prev=node->prev;
}
void movetohead(DLinkedNode* node)
{
removenode(node);
addtohead(node);
}
DLinkedNode* removetail()
{
DLinkedNode* node=tail->prev;
removenode(node);
return node;
}
LRUCache(int capacity):capacity(capacity),size(0) {
head=new DLinkedNode();
tail=new DLinkedNode();
head->next=tail;
tail->prev=head;
}
int get(int key) {
if(!cache.count(key))return -1;
DLinkedNode* node=cache[key];
movetohead(node);
return node->value;
}
void put(int key, int value) {
if(!cache.count(key))
{
DLinkedNode* node=new DLinkedNode(key,value);
cache[key]=node;
addtohead(node);
size++;
if(size>capacity)
{
DLinkedNode* removed=removetail();
cache.erase(removed->key);
delete removed;
--size;
}
}
else
{
DLinkedNode* node=cache[key];
node->value=value;
movetohead(node);
}
}
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/
做法一:递归
class Solution {
public:
void tree(TreeNode* node,vector<int>& vec)
{
if(node==nullptr)return;
tree(node->left,vec);
vec.push_back(node->val);
tree(node->right,vec);
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> vec;
tree(root,vec);
return vec;
}
};
做法二:迭代
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> vec;
stack<TreeNode*> s;
while(root!=nullptr||!s.empty())
{
while(root!=nullptr)
{
s.push(root);
root=root->left;
}
root=s.top();
s.pop();
vec.push_back(root->val);
root=root->right;
}
return vec;
}
};
做法三:morris遍历算法
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
TreeNode *predecessor=nullptr;
while(root!=nullptr)
{
if(root->left!=nullptr)
{
predecessor=root->left;
while(predecessor->right!=nullptr&&predecessor->right!=root)
{
predecessor=predecessor->right;
}
if(predecessor->right==nullptr)
{
predecessor->right=root;
root=root->left;
}
else
{
res.push_back(root->val);
predecessor->right=nullptr;
root=root->right;
}
}
else{
res.push_back(root->val);
root=root->right;
}
}
return res;
}
};
做法:递归 迭代都可以
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==nullptr)return 0;
return max(maxDepth(root->left),maxDepth(root->right))+1;
}
};