一、 任务介绍
BPSK 调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于 ASK 移幅键控和 FSK 移频键控。因此,PSK 技术在中、高速数据传输中得到了十分广泛的应用。
二、基本原理
PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定 0 相位载波和π相位载波分别代表传 1 和传 0,其时域波形示意图如图 2-1 所示。设二进制单极性码为 an,其对应的双极性二进制码为 bn,则 BPSK 信号的一般时域数学表达式为:
由(2-1)式可见,BPSK 信号是一种双边带信号我们知道,BPSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为 BPSK 的“倒π”现象,因此,实际中一般不采用 BPSK 方式,而采用差分移相(2DPSK)方式。
三、基于FPGA实现BPSK 调制
1、 创建工程文件,选择对应 BYS3 的型号;
2、添加一个顶层文件;
3、 创建一个 RAM IP 核用来存放 DDS 数据,此步骤为 DDS 的使用;
4、添加相应matlab生成的coe 文件;
5、 IP 核创建完成后,进行离线仿真验证 IP 核,创建一个仿真文件:找到 Simulation 目录,右击刚刚创建的仿真文件,选择 Set as Top,找到生成的 IP 核,复制框选的代码,作为例化的模板;将 IP 核例化到仿真文件中,再添加测试的模拟时钟和地址累加,如下图可以看到 douta 的正弦波波形;单载波离线仿真完成。
6、接下来创建约束 XDC 文件,代码在实验代码部分;
7、逻辑分析仪的使用,先点击 run synthesis 结束没有报错后 点开 Open
synthesis 再点击 Set Up DeBug,确认信号线都已添加;
8、添加完成后点击生成 bit,再点击 program devic,选择芯片,最后点击 program;
9、点击 run 出现波形,片上示波器使用步骤完成:
四、源码
veirilog HDL TOP 层代码代码:
module BPSK(
input clk, input reset, output sclk, //AD
output cs_n, //AD
output led, input sdata, //AD
output sinout1,//DA
output sync_n, //DA
output sysclk,//DA
output sinout2
);
reg [7:0]addr;
wire [7:0] sin;
reg clk_10m;
reg [1:0] cont;
wire [7:0] data;
sin sin_rom (
.clka(clk_10m), // input wire clka
.ena(1'b1), // input wire ena
.addra(addr), // input wire [7 : 0] addra
.douta(sin) // output wire [7 : 0] douta
);
always @(negedge clk_10m)
if(~reset)
addr <= 0;
else //if(sync_n==1)
addr <= addr + 1500;
clk_freq clk_freq(
.clk(clk),
.rst_n(reset),
.clk_10m(clk_10m)
);
always @(negedge clk or negedge reset)
begin
if(!reset)
cont <=0;
else
cont <=cont+2'b01;
end
adc_adc081s021 adc_adc081s021(
cs_n,sclk,data, cont[1], reset,sdata
);
DAC_deltasigma DAC_deltasigma
(
.DACout(sinout2),
.DACin(sin), // .DACin(data),
.Clk(clk_10m),
.Reset(reset)
);
DAC_dac081s101 DAC_dac081s101
(
.DACout(sinout1),
.sync_n(sync_n),
.DACin(sin),
.Clk(clk_10m),
.Reset(reset),
.sysclk(sysclk)
);
PN 码
reg [24:0]cnt;
wire pn_clk;
wire pn_out;
always @(negedge clk_10m) //时钟四分频
begin
if(~reset)
cnt<=0;
else
cnt<=cnt+1;
end
assign pn_clk =cnt[1];
code_gen U_code_gen(
.clk(clk_10m),
.grst_n(reset),
.ms_flag(1'b0),
.num(6'b000110),
.pn_clk(pn_clk),
.pn_out(pn_out)
);
reg [7:0] bpsk;
always @(negedge clk_10m)
bpsk<= pn_out?(~sin):sin;
assign led = &(pn_out|bpsk|sin);
endmodule
adc_adc081s021 模块代码:
module adc_adc081s021(
cs_n,sclk, data, clk, reset, sdata
);
output sclk;
output cs_n;
output [7:0] data;
input clk;
input reset;
input sdata;
reg sclk;
reg cs_n;
reg count;
reg [4:0] bits;
reg [7:0] data;
always @(negedge clk or negedge reset)
begin
if(!reset)
begin
count<=0;
end
else
begin
count<=count+1;
end
end
always @(negedge clk or negedge reset)
begin
if(!reset)
begin
sclk<=0;
end
else
begin
if(count==1)
sclk<=~sclk;
end
end
always @(negedge sclk or negedge reset)
begin
if(!reset)
begin
cs_n<=1'b1;
data<=0;
bits<=0;
end
else
case(bits)
5'd0:
begin
if(cs_n)
begin
bits <= 5'd0;
cs_n <=0;
end
else
bits <= 5'd1;
end
5'd1:
begin
bits <= 5'd2;
cs_n<=1'b0;
end
5'd2:
begin
bits <= 5'd3;
cs_n<=1'b0;
end
5'd3:
begin
bits <= 5'd4;
cs_n <= 1'b0;
end
5'd4:
begin
data[7]<= sdata;
bits <= 5'd5;
cs_n<=1'b0;
end
5'd5:
begin
data[6]<= sdata;
bits <= 5'd6;
cs_n<=1'b0;
end
5'd6:
begin
data[5]<= sdata;
bits <= 5'd7;
cs_n <=1'b0;
end
5'd7:
begin
data[4]<= sdata;
bits <= 5'd8;
cs_n <=1'b0;
end
5'd8:
begin
data[3]<= sdata;
bits <= 5'd9;
cs_n <=1'b0;
end
5'd9:
begin
data[2]<= sdata;
bits <= 5'd10;
cs_n <= 1'b0;
end
5'd10:
begin
data[1]<= sdata;
bits <= 5'd11;
cs_n <= 1'b0;
end
5'd11:
begin
data[0]<= sdata;
bits <= 5'd12;
cs_n<=1'b0;
end
5'd12:
begin
bits <= 5'd13;
cs_n<=1'b0;
end
5'd13:
begin
bits <= 5'd14;
cs_n<=1'b0;
end
5'd14:
begin
bits <= 5'd15;
cs_n<=1'b0;
end
5'd15:
begin
bits <= 5'd16;
cs_n<=1'b1;
end
5'd16:
begin
bits <= 5'd17;
cs_n<=1'b1;
end
5'd17:
begin
bits <= 5'd18;
cs_n<=1'b1;
end
5'd18:
begin
bits <= 5'd19;
cs_n<=1'b1;
end
5'd19:
begin
bits <= 5'd0;
cs_n<=1'b1;
end
endcase
end
endmodule
DAC_deltasigma 模块代码:
`define MSBI 7
module DAC_deltasigma(DACout, DACin, Clk, Reset);
output DACout; // This is the average output that feeds low pass filter
reg DACout; // for optimum performance, ensure that this ff is in IOB
input [`MSBI:0] DACin; // DAC input (excess 2**MSBI)
input Clk;
input Reset;
reg [`MSBI+2:0] DeltaAdder; // Output of Delta adder
reg [`MSBI+2:0] SigmaAdder; // Output of Sigma adder
reg [`MSBI+2:0] SigmaLatch; // Latches output of Sigma adder
reg [`MSBI+2:0] DeltaB; // B input of Delta adder
always @(SigmaLatch) DeltaB = {SigmaLatch[`MSBI+2], SigmaLatch[`MSBI+2]} << (`MSBI+1);
always @(DACin or DeltaB) DeltaAdder = DACin + DeltaB;
always @(DeltaAdder or SigmaLatch) SigmaAdder = DeltaAdder + SigmaLatch;
always @(posedge Clk or negedge Reset)
begin
if(!Reset)
begin
SigmaLatch <= 1'b1 << (`MSBI + 1);
DACout <= 1'b0;
end
else
begin
SigmaLatch <= SigmaAdder;
DACout <= SigmaLatch[`MSBI+2];
end
end
endmodule
DAC_dac081s101 模块代码:
module DAC_dac081s101(
DACout, sync_n, DACin,
Clk, Reset, sysclk
);
output DACout; // This is the average output that feeds low pass filter
output sync_n;
reg DACout; // for optimum performance, ensure that this ff is in IOB
reg sync_n;
output sysclk;
input [7:0] DACin;
input Clk;
input Reset;
//reg [15:0] reg1;
reg [3:0] bits;
reg sysclk;
always @(negedge Clk or negedge Reset)
begin
if(~Reset)
begin
sysclk <= 0;
end
else
sysclk<=~sysclk;
end
always @(negedge sysclk or negedge Reset)
begin
if(!Reset)
begin
bits <= 4'b0;
DACout <= 1'b0;
sync_n<=1'b1;
end
else
case(bits)
4'd0:
begin
DACout <= 0;
if(sync_n)
begin
bits <= 4'd0;
sync_n <=0;
end
else
bits <= 4'd1;
end
4'd1:
begin
DACout <= 0;
bits <= 4'd2;
sync_n<=1'b0;
end
4'd2:
begin
DACout <= 0;
bits <= 4'd3;
sync_n<=1'b0;
end
4'd3:
begin
DACout <= DACin[7];
//DACout <= 0;
bits <= 4'd4;
sync_n<=1'b0;
end
4'd4:
begin
DACout <= DACin[6];
// DACout <= 0;
bits <= 4'd5;
sync_n<=1'b0;
end
4'd5:
begin
DACout <= DACin[5];
bits <= 4'd6;
sync_n<=1'b0;
end
4'd6:
begin
DACout <= DACin[4];
bits <= 4'd7;
sync_n<=1'b0;
end
4'd7:
begin
DACout <= DACin[3];
bits <= 4'd8;
sync_n<=1'b0;
end
4'd8:
begin
DACout <= DACin[2];
bits <= 4'd9;
sync_n<=1'b0;
end
4'd9:
begin
DACout <= DACin[1];
bits <= 4'd10;
sync_n<=1'b0;
end
4'd10:
begin
DACout <= DACin[0];
bits <= 4'd11;
sync_n<=1'b0;
end
4'd11:
begin
// DACout <= DACin[0];
DACout <= 0;
bits <= 4'd12;
sync_n<=1'b0;
end
4'd12:
begin
// DACout <= DACin[0];
DACout <= 0;
bits <= 4'd13;
sync_n<=1'b0;
end
4'd13:
begin
DACout <= 0;
bits <= 4'd14;
sync_n<=1'b0;
end
4'd14:
begin
DACout <= 0;
bits <= 4'd15;
sync_n<=1'b0;
end
4'd15:
begin
DACout <= 0;
bits <= 4'd0;
sync_n<=1'b1;
end
endcase
end
endmodul