对接日本金融市场数据全指南:K线、实时行情与IPO新股

发布于:2025-04-12 ⋅ 阅读:(49) ⋅ 点赞:(0)

一、日本金融市场特色与数据价值

日本作为全球第三大经济体,其金融市场具有以下显著特点:

  • 成熟稳定:日经225指数包含日本顶级蓝筹股
  • 独特交易时段:上午9:00-11:30,下午12:30-15:00(JST)
  • 高流动性:TOPIX指数成分股日均成交额超3万亿日元
  • IPO特色:新兴成长股集中在Mothers和JASDAQ市场
  • 外资参与度高:占东京证券交易所交易量约70%

二、环境配置与基础对接

1. API密钥与基础配置

# 基础配置
API_KEY = "your_japan_api_key"  # 通过StockTV官网申请
BASE_URL = "https://api.stocktv.top"
JAPAN_ID = 35  # 日本国家代码
TSE_EXCHANGE = "TSE"  # 东京证券交易所代码

# 时区设置
import pytz
jst = pytz.timezone('Asia/Tokyo')

2. 安装必要库

pip install requests websocket-client pandas plotly python-dotenv

三、K线数据专业对接方案

1. 多周期K线获取接口

def get_japan_kline(stock_code, interval="1d", market="TSE1"):
    """
    获取日本股票K线数据
    :param stock_code: 股票代码(如7203.T)
    :param interval: 时间间隔(1m/5m/15m/1h/1d)
    :param market: 市场类型(TSE1/TSE2/Mothers/JASDAQ)
    """
    url = f"{BASE_URL}/stock/kline"
    params = {
        "symbol": stock_code,
        "market": market,
        "interval": interval,
        "countryId": JAPAN_ID,
        "key": API_KEY
    }
    response = requests.get(url, params=params)
    data = response.json()
    
    # 转换为DataFrame并处理时区
    df = pd.DataFrame(data['data'])
    df['time'] = pd.to_datetime(df['time'], unit='ms').dt.tz_localize('UTC').dt.tz_convert(jst)
    return df

# 获取丰田汽车(7203.T)日K数据
toyota_kline = get_japan_kline("7203.T", interval="1d")

2. 专业K线可视化(日本特色)

import plotly.graph_objects as go
from plotly.subplots import make_subplots

def plot_japanese_stock(df, title):
    # 创建带成交量的子图
    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, 
                       vertical_spacing=0.05,
                       row_heights=[0.7, 0.3])
    
    # K线主图(日本常用红色表示下跌)
    fig.add_trace(go.Candlestick(
        x=df['time'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'],
        name='K线',
        increasing_line_color='blue',  # 日本市场通常用蓝色表示上涨
        decreasing_line_color='red'    # 红色表示下跌
    ), row=1, col=1)
    
    # 添加日本常用的25日均线(月线)
    df['MA25'] = df['close'].rolling(25).mean()
    fig.add_trace(go.Scatter(
        x=df['time'],
        y=df['MA25'],
        name='MA25',
        line=dict(color='orange', width=1.5)
    ), row=1, col=1)
    
    # 成交量柱状图(日本常用单位:千股)
    df['volume_1000'] = df['volume'] / 1000
    fig.add_trace(go.Bar(
        x=df['time'],
        y=df['volume_1000'],
        name='成交量(千股)',
        marker_color='grey'
    ), row=2, col=1)
    
    fig.update_layout(
        title=f'{title} - 日本市场',
        xaxis_title='东京时间(JST)',
        yaxis_title='价格(JPY)',
        template="plotly_white",
        hovermode="x unified",
        height=600
    )
    
    # 隐藏周末和非交易时间
    fig.update_xaxes(
        rangeslider_visible=False,
        rangebreaks=[
            {'bounds': ['sat', 'mon']},  # 隐藏周末
            {'bounds': [11.5, 12.5, 'hour']}  # 隐藏午间休市
        ]
    )
    
    fig.show()

plot_japanese_stock(toyota_kline, "丰田汽车(7203.T)")

四、实时行情数据对接

1. WebSocket实时数据订阅

class JapanRealtimeData:
    def __init__(self):
        self.symbol_map = {
            "7203.T": "丰田汽车",
            "9984.T": "软银集团",
            "9433.T": "KDDI"
        }
    
    def on_message(self, ws, message):
        data = json.loads(message)
        
        # 处理股票行情
        if data.get('type') == 'stock':
            symbol = data['symbol']
            name = self.symbol_map.get(symbol, symbol)
            change = data.get('chgPct', 0)
            
            # 日本市场特殊颜色表示
            color = "🔵" if change >= 0 else "🔴"
            print(f"{color} {name}({symbol}): {data['last']:,} JPY "
                  f"({change:+.2f}%) 成交量: {data['volume']:,}")
        
        # 处理指数行情
        elif data.get('type') == 'index':
            print(f"📊 {data['name']}: {data['last']:,} "
                  f"({data.get('chgPct', 0):+.2f}%)")
    
    def start(self):
        ws = websocket.WebSocketApp(
            f"wss://ws-api.stocktv.top/connect?key={API_KEY}",
            on_message=self.on_message,
            on_open=self.on_open
        )
        
        # 启动独立线程
        self.ws_thread = threading.Thread(target=ws.run_forever)
        self.ws_thread.daemon = True
        self.ws_thread.start()
    
    def on_open(self, ws):
        # 订阅日本龙头股和日经225指数
        subscribe_msg = {
            "action": "subscribe",
            "countryId": JAPAN_ID,
            "symbols": list(self.symbol_map.keys()),
            "indices": ["N225"]  # 日经225指数代码
        }
        ws.send(json.dumps(subscribe_msg))

# 启动实时服务
jp_realtime = JapanRealtimeData()
jp_realtime.start()

五、日本IPO新股数据对接

1. 获取IPO日历与详情

def get_japan_ipo_list(status="upcoming"):
    """
    获取日本IPO列表
    :param status: upcoming(即将上市)/recent(近期上市)
    """
    url = f"{BASE_URL}/stock/getIpo"
    params = {
        "countryId": JAPAN_ID,
        "status": status,
        "key": API_KEY
    }
    response = requests.get(url, params=params)
    return response.json()

# 获取即将上市的IPO
upcoming_ipos = get_japan_ipo_list()
print("日本即将上市IPO:")
for ipo in upcoming_ipos['data'][:3]:
    print(f"- {ipo['company']} ({ipo['symbol']})")
    print(f"  市场: {ipo.get('exchange', 'N/A')}")
    print(f"  发行价: {ipo['ipoPrice']:,} JPY")
    print(f"  上市日期: {ipo['date']}")

# 获取近期IPO表现
recent_ipos = get_japan_ipo_list("recent")
print("\n近期IPO首日表现:")
for ipo in recent_ipos['data'][:3]:
    change = (ipo['last'] - ipo['ipoPrice']) / ipo['ipoPrice'] * 100
    print(f"- {ipo['company']}: {ipo['ipoPrice']:,}{ipo['last']:,} JPY "
          f"({change:+.2f}%)")

2. IPO数据分析可视化

def analyze_japan_ipos():
    ipos = get_japan_ipo_list("recent")['data']
    df = pd.DataFrame(ipos)
    
    # 计算收益率
    df['return_pct'] = (df['last'] - df['ipoPrice']) / df['ipoPrice'] * 100
    
    # 按交易所分析
    exchange_analysis = df.groupby('exchange')['return_pct'].agg(['mean', 'count'])
    print("\n分交易所IPO平均表现:")
    print(exchange_analysis.sort_values('mean', ascending=False))
    
    # 可视化
    fig = px.box(df, x='exchange', y='return_pct',
                 title="日本各交易所IPO表现对比",
                 labels={'exchange':'交易所', 'return_pct':'收益率(%)'})
    fig.show()
    
    return df

ipo_analysis = analyze_japan_ipos()

六、生产环境最佳实践

1. 日本市场特殊处理

# 日本市场假期处理
JP_HOLIDAYS = [
    '2024-01-01', '2024-01-08', '2024-02-12',  # 示例日期
    '2024-04-29', '2024-05-03', '2024-05-06'
]

def is_japan_trading_day(date):
    """检查是否为日本交易日"""
    date_str = date.strftime('%Y-%m-%d')
    weekday = date.weekday()
    return date_str not in JP_HOLIDAYS and weekday < 5

# 处理日本特有的午间休市
def is_japan_trading_time(dt):
    """检查是否为日本交易时间"""
    if not is_japan_trading_day(dt):
        return False
    hour = dt.hour
    return (9 <= hour < 11) or (12 <= hour < 15)

2. 性能优化与缓存

from functools import lru_cache
import redis

# 初始化Redis
redis_client = redis.StrictRedis(host='localhost', port=6379, db=2)

@lru_cache(maxsize=100)
def get_japan_stock_info(symbol):
    """带缓存的股票信息查询"""
    cache_key = f"jp:stock:{symbol}:info"
    cached = redis_client.get(cache_key)
    if cached:
        return json.loads(cached)
    
    url = f"{BASE_URL}/stock/queryStocks"
    params = {
        "symbol": symbol,
        "countryId": JAPAN_ID,
        "key": API_KEY
    }
    data = safe_api_call(url, params)
    redis_client.setex(cache_key, 3600, json.dumps(data))  # 缓存1小时
    return data

七、总结与资源

核心要点回顾

  1. K线数据:适配日本市场特色的技术指标和颜色表示
  2. 实时行情:处理日本特有的交易时段和午间休市
  3. IPO数据:区分主板/Mothers/JASDAQ等不同市场的表现

扩展资源

日本市场特别注意

  1. 价格单位:股票通常以日元为单位,1手=100股
  2. 涨跌停限制:根据股价分4档(30%/20%/10%/5%)
  3. 股息支付:多数公司一年分红两次
  4. 关注日本特有的"株主優待"(股东优待制度)

网站公告

今日签到

点亮在社区的每一天
去签到