【2025年泰迪杯数据挖掘挑战赛】B题 详细解题思路+数据预处理+代码分享

发布于:2025-04-13 ⋅ 阅读:(53) ⋅ 点赞:(0)

2025年泰迪杯B题详细解题思路

初步分析整理了B题的赛题分析与解题思路,后面还会更新详细的建模论文与解题代码,明天完成!

问题一

问题分析

需要从附件1的加速度数据中提取MET值,并按强度分类统计时长。核心在于正确处理时间戳间隔和MET区间分类。由于时间戳为毫秒级,需计算相邻时间差并累加至对应活动类别。需注意时间差计算的精度及MET区间的边界条件。

数学模型

在这里插入图片描述

Python代码

import pandas as pd
import re
import os

def process_volunteer(file_path):
    df = pd.read_csv(file_path)
    df['日期'] = pd.to_numeric(df['日期'])
    df = df.sort_values('日期')
    df['delta'] = df['日期'].diff().shift(-1) / (3600 * 1000)  # 转换为小时
    df = df.dropna(subset=['delta'])
    
    # 提取MET值
    df['MET'] = df['标签'].apply(lambda x: float(re.search(r'MET值\s*([0-9.]+)', x).group(1)))
    
    # 分类统计
    bins = [-float('inf'), 1, 1.6, 3, 6, float('inf')]
    labels = ['睡眠', '静态活动', '低等强度', '中等强度', '高等强度']
    df['category'] = pd.cut(df['MET'], bins=bins, labels=labels, right=False)
    result = df.groupby('category')['delta'].sum().to_dict()
    
    return {
        '志愿者ID': os.path.basename(file_path).split('.')[0],
        '记录总时长(小时)': round(df['delta'].sum(), 4),
        '睡眠总时长(小时)': round(result.get('睡眠', 0), 4),
        '高等强度运动总时长(小时)': round(result.get('高等强度', 0), 4),
        '中等强度运动总时长(小时)': round(result.get('中等强度', 0), 4),
        '低等强度运动总时长(小时)': round(result.get('低等强度', 0), 4),
        '静态活动总时长(小时)': round(result.get('静态活动', 0), 4)
    }

# 主程序
metadata = pd.read_csv('Metadatal.csv')
results = []
for vid in metadata['志愿者ID']:
    file_path = f'附件1/P{vid}.csv'
    if os.path.exists(file_path):
        res = process_volunteer(file_path)
        results.append(res)

pd.DataFrame(results).to_excel('result_1.xlsx', index=False)

Matlab代码

function B1()
    dataDir = '附件1/';
    meta = readtable('Metadatal.csv');
    results = cell(height(meta), 7);
    
    for i = 1:height(meta)
        vid = meta.志愿者ID{i};
        file = [dataDir 'P' vid '.csv'];
        if ~exist(file, 'file'), continue; end
        
        % 读取数据并排序
        tbl = readtable(file);
        tbl.日期 = str2double(tbl.日期);
        [~, idx] = sort(tbl.日期);
        tbl = tbl(idx, :);
        
        % 计算时间差
        delta = diff(tbl.日期) / (3600 * 1000); % 转换为小时
        met = zeros(length(delta), 1);
        for j = 1:length(delta)
            metStr = tbl.标签{j};
            metVal = regexp(metStr, 'MET值\s*([0-9.]+)', 'tokens', 'once');
            met(j) = str2double(metVal{1});
        end
        
        % 分类统计
        edges = [-inf, 1, 1.6, 3, 6, inf];
        [~, bin] = histc(met, edges);
        total = sum(delta);
        counts = accumarray(bin, delta, [5, 1], @sum, 0);
        
        % 保存结果
        results(i, :) = {vid, total, counts(1), counts(5), counts(4), counts(3), counts(2)};
    end
    
    % 输出到Excel
    T = cell2table(results, 'VariableNames', {'志愿者ID', '总时长', '睡眠', '高等', '中等', '低等', '静态'});
    writetable(T, 'result_1.xlsx');
end

问题二

问题分析

需构建回归模型预测MET值。输入特征包括三轴加速度的时域、频域统计量及元数据(年龄、性别)。模型需捕捉加速度与MET值的非线性关系。

数学模型

在这里插入图片描述
在这里插入图片描述

Python代码

import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

def extract_features(data):
    x = data['X'].values
    y = data['Y'].values
    z = data['Z'].values
    vm = np.sqrt(x**2 + y**2 + z**2)
    
    # 时域特征
    features = {
        'x_mean': np.mean(x), 'x_std': np.std(x),
        'y_mean': np.mean(y), 'y_std': np.std(y),
        'z_mean': np.mean(z), 'z_std': np.std(z),
        'vm_mean': np.mean(vm), 'vm_std': np.std(vm),
        'vm_rms': np.sqrt(np.mean(vm**2))
    }
    
    # 频域特征
    for axis, sig in zip(['x', 'y', 'z'], [x, y, z]):
        fft = np.abs(np.fft.rfft(sig))
        features[f'{axis}_energy'] = np.sum(fft**2)
    
    return features

# 训练数据准备
metadata = pd.read_csv('Metadatal.csv')
X, y = [], []
for vid in metadata['志愿者ID']:
    df = pd.read_csv(f'附件1/P{vid}.csv')
    df['MET'] = df['标签'].str.extract(r'MET值\s*([0-9.]+)').astype(float)
    
    # 滑动窗口处理(窗口5秒)
    window_size = 5
    for i in range(0, len(df
) - window_size, window_size):
        window = df.iloc[i:i+window_size]
        feat = extract_features(window)
        feat['age'] = metadata.loc[metadata['志愿者ID'] == vid, '年龄'].values[0]
        feat['gender'] = 1 if metadata.loc[metadata['志愿者ID'] == vid, '性别'].values[0] == '男' else 0
        X.append(feat)
        y.append(window['MET'].mean())

# 训练模型
model = RandomForestRegressor(n_estimators=100)
scores = cross_val_score(model, pd.DataFrame(X), y, cv=5, scoring='r2')
print(f'交叉验证R²得分: {np.mean(scores):.4f}')
model.fit(pd.DataFrame(X), y)

# 预测附件2数据

Matlab代码

function B2()
    % 特征提取函数
    function feat = extractFeatures(x, y, z)
        vm = sqrt(x.^2 + y.^2 + z.^2);
        feat = [mean(x), std(x), mean(y), std(y), mean(z), std(z), ...
                mean(vm), std(vm), rms(vm), sum(abs(fft(x)).^2), ...
                sum(abs(fft(y)).^2), sum(abs(fft(z)).^2)];
    end

    % 加载数据
    meta = readtable('Metadatal.csv');
    X = []; y = [];
    for i = 1:height(meta)
        file = ['附件1/P' meta.志愿者ID{i} '.csv'];
        tbl = readtable(file);
        met = cellfun(@(s) str2double(regexp(s, 'MET值\s*([0-9.]+)', 'tokens', 'once')), tbl.标签);
        
        % 滑动窗口处理
        winSize = 5;  % 5秒窗口
        for j = 1:winSize:height(tbl)-winSize
            x = tbl.X(j:j+winSize-1);
            y_axis = tbl.Y(j:j+winSize-1);
            z = tbl.Z(j:j+winSize-1);
            feat = extractFeatures(x, y_axis, z);
            X = [X; feat meta.年龄(i) strcmp(meta.性别{i}, '男')];
            y = [y; mean(met(j:j+winSize-1))];
        end
    end
    
    % 训练随机森林
    model = TreeBagger(100, X, y, 'Method', 'regression');
    
    % 预测附件2
end

问题三

问题分析

睡眠阶段通过低活动量时段检测。计算向量幅度(VM)的滑动窗口均值,低于阈值视为睡眠候选,进一步聚类划分模式。

数学模型

活动量计算:
[
VM(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}
]
睡眠窗口检测:
[
W_{\text{sleep}} = { t \mid \overline{VM}(t) < \theta }
]
K-means聚类:
目标函数为最小化类内平方和:
[
\min \sum_{k=1}^K \sum_{\mathbf{x} \in C_k} | \mathbf{x} - \mathbf{\mu}_k |^2
]
其中 ( \mathbf{\mu}_k ) 为窗口特征 ( \mathbf{x} ) 的聚类中心。

Python代码

from sklearn.cluster import KMeans

def detect_sleep(file_path):
    df = pd.read_csv(file_path)
    df['vm'] = np.sqrt(df['X']**2 + df['Y']**2 + df['Z']**2)
    
    # 滑动窗口检测低活动(30秒窗口)
    window_size = 30
    df['window'] = df.index // window_size
    activity = df.groupby('window')['vm'].mean()
    sleep_windows = activity[activity < 0.1].index
    
    # 提取窗口特征
    features = []
    for win in sleep_windows:
        win_data = df[df['window'] == win]
        vm_mean = win_data['vm'].mean()
        vm_std = win_data['vm'].std()
        features.append([vm_mean, vm_std])
    
    # K-means聚类
    if len(features) == 0:
        return {'睡眠总时长': 0.0, '模式一': 0.0, '模式二': 0.0, '模式三': 0.0}
    kmeans = KMeans(n_clusters=3).fit(features)
    labels = kmeans.labels_
    counts = np.bincount(labels, minlength=3)
    hours = counts * window_size / 3600  # 转换为小时
    
    return {
        '睡眠总时长': round(np.sum(hours), 4),
        '模式一': round(hours[0], 4),
        '模式二': round(hours[1], 4),
        '模式三': round(hours[2], 4)
    }

# 处理附件2并保存结果

Matlab代码

function B3()
    function [total, modes] = detectSleep(file)
        tbl = readtable(file);
        vm = sqrt(tbl.X.^2 + tbl.Y.^2 + tbl.Z.^2);
        
        % 检测低活动窗口(30秒窗口)
        winSize = 30;
        numWin = floor(height(tbl)/winSize);
        act = zeros(numWin, 1);
        for i = 1:numWin
            idx = (i-1)*winSize + 1 : i*winSize;
            act(i) = mean(vm(idx));
        end
        sleepWins = find(act < 0.1);
        
        % 提取特征并聚类
        features = zeros(length(sleepWins), 2);
        for j = 1:length(sleepWins)
            idx = (sleepWins(j)-1)*winSize + 1 : sleepWins(j)*winSize;
            vmWin = vm(idx);
            features(j, :) = [mean(vmWin), std(vmWin)];
        end
        
        if isempty(features)
            total = 0; modes = zeros(1,3);
        else
            [~, C] = kmeans(features, 3);
            counts = histcounts(C, 1:4);
            total = sum(counts) * winSize / 3600;
            modes = counts * winSize / 3600;
        end
    end
    
    % 应用至附件2(略)
end

问题四

问题分析

检测连续静态活动(MET<1.6)超过30分钟的时段。遍历预测的MET序列,记录连续满足条件的时段。

数学模型

设MET序列为 ( MET(t) ),窗口步长 ( \Delta t )(单位:分钟),久坐判定条件为:
[
\sum_{i=t}^{t+\Delta t} MET(i) < 1.6 \quad \text{且} \quad \Delta t \geq 30
]

Python代码

def sedentary_alert(met_series, window_min=5):
    delta = window_min / 60  # 转换为小时
    sedentary = []
    current_duration = 0.0
    start_idx = None
    
    for i, met in enumerate(met_series):
        if met < 1.6:
            current_duration += delta
            if start_idx is None:
                start_idx = i
        else:
            if current_duration >= 0.5:  # 0.5小时=30分钟
                end_idx = i - 1
                sedentary.append((start_idx, end_idx, current_duration))
            current_duration = 0.0
            start_idx = None
    
    if current_duration >= 0.5:
        sedentary.append((start_idx, len(met_series)-1, current_duration))
    
    return sedentary

# 应用至附件2预测结果

Matlab代码

function B4()
    function alerts = detectSedentary(met, winSize)
        delta = winSize / 60;  % 窗口分钟转小时
        alerts = [];
        start = 1; count = 0;
        
        for i = 1:length(met)
            if met(i) < 1.6
                count = count + delta;
                if isempty(start), start = i; end
            else
                if count >= 0.5  % 0.5小时=30分钟
                    alerts = [alerts; [start, i-1, count]];
                end
                count = 0;
                start = [];
            end
        end
        
        if count >= 0.5
            alerts = [alerts; [start, length(met), count]];
        end
    end
    
    % 应用至附件2(略)
end

完整论文代码获取,请看下方~ 可直接指导比赛,冲国奖