【从0到1学Elasticsearch】Elasticsearch从入门到精通(下)

发布于:2025-04-15 ⋅ 阅读:(26) ⋅ 点赞:(0)

我们在【从0到1学Elasticsearch】Elasticsearch从入门到精通(上)这边文章详细讲解了如何创建索引库和文档及javaAPI操作,但是在实战当中,我们还需要根据一些特殊字段对文档进行查找搜索,仅仅靠id查找文档是显然不够的。

DSL查询

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

快速入门

我们依然在Kibana的DevTools中学习查询的DSL语法。首先来看查询的语法结构:

GET /{索引库名}/_search
{
  "query": {
    "查询类型": {
      // .. 查询条件
    }
  }
}

说明:

  • GET /{索引库名}/_search:其中的_search是固定路径,不能修改

这里我们可以使用match_all查询所有

GET /items/_search
{
  "query": {
    "match_all": {
      
    }
  }
}

在这里插入图片描述
你会发现虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

叶子查询

这里列举一些常见的,例如:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:
    • match:
    • multi_match
  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:
    • ids
    • term
    • range
  • 地理坐标查询:用于搜索地理位置,搜索方式很多,例如:
    • geo_bounding_box:按矩形搜索
    • geo_distance:按点和半径搜索
  • …略
全文检索查询
GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

在这里插入图片描述
与match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}
精确查询

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。例如:

  • id
  • price
  • 城市
  • 地名
  • 人名
GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

当你输入的搜索条件不是词条,而是短语时,由于不做分词,你反而搜索不到。
我们再来看下range

GET /{索引库名}/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": {最小值},
        "lte": {最大值}
      }
    }
  }
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于
  • gt:大于
  • lte:小于等于
  • lt:小于

复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
    • function_score
    • dis_max
算分函数查询

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 “手机”,结果如下:
在这里插入图片描述
从elasticsearch5.1开始,采用的相关性打分算法是BM25算法,公式如下:
在这里插入图片描述
然而在实际的业务当中,我们需要给广告商铺基于靠前的位置,那么这套算法就不太起作用了,要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是Iphone
            "term": {
              "brand": "Iphone"
            }
          },
          "weight": 10 // 算分权重为2
        }
      ],
      "boost_mode": "multipy" // 加权模式,求乘积
    }
  }
}
bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分
GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

demo

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "filter": [
        {"term": {"brand": { "value": "华为" }}},
        {"range": {"price": {"gte": 90000, "lt": 159900}}}
      ]
    }
  }
}

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "排序字段": {
        "order": "排序方式asc和desc"
      }
    }
  ]
}

demo

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

分页

基础分页

elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档
    类似于mysql中的limit ?, ?
GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}
深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。
比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。
从语句来分析,要查询第990~1000名的数据。
从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?
要知道每一片的数据都不一样,第1片上的第9001000,在另1个节点上并不一定依然是9001000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~1000的数据即可。
如图:
在这里插入图片描述
试想一下,假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?
由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。
因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

高亮

我们在搜索引擎搜索东西的时候会发现,我们搜索的词,在被搜索出来的东西上关键字会被标记为红色
在这里插入图片描述
观察页面源码,高亮的词条被加上了<strong></strong>的标签,而在css的代码当中凡是加了strong标签的字段都会变为红色

css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。
因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的。

因此实现高亮的思路就是:

  • 用户输入搜索关键字搜索数据
  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签
  • 前端提前给约定好的html标签添加CSS样式
实现高亮
GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

在这里插入图片描述

RestClient查询

文档的查询依然使用昨天学习的 RestHighLevelClient对象,查询的基本步骤如下:

  • 1)创建request对象,这次是搜索,所以是SearchRequest
  • 2)准备请求参数,也就是查询DSL对应的JSON参数
  • 3)发起请求
  • 4)解析响应,响应结果相对复杂,需要逐层解析

快速入门

发起请求

首先以match_all查询为例,其DSL和JavaAPI的对比如图:
在这里插入图片描述
代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
  • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),它构建的就是DSL中的完整JSON参数。其中包含了query、sort、from、size、highlight等所有功能:
在这里插入图片描述
另一个是QueryBuilders,其中包含了我们学习过的各种叶子查询、复合查询等:
在这里插入图片描述

解析响应结果
{
    "took" : 0,
    "timed_out" : false,
    "hits" : {
        "total" : {
            "value" : 2,
            "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
            {
                "_index" : "heima",
                "_type" : "_doc",
                "_id" : "1",
                "_score" : 1.0,
                "_source" : {
                "info" : "Java讲师",
                "name" : "赵云"
                }
            }
        ]
    }
}

因此,我们解析SearchResponse的代码就是在解析这个JSON结果,对比如下:
在这里插入图片描述
代码解读:
elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

叶子查询

所有的查询条件都是由QueryBuilders来构建的,叶子查询也不例外。因此整套代码中变化的部分仅仅是query条件构造的方式,其它不动。
match

@Test
void testMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

再比如multi_match查询:

@Test
void testMultiMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

range

@Test
void testRange() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

term

@Test
void testTerm() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.termQuery("brand", "华为"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

复合查询

boolc查询

复合查询也是由QueryBuilders来构建,我们以bool查询为例,DSL和JavaAPI的对比如图:
在这里插入图片描述

@Test
void testBool() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.准备bool查询
    BoolQueryBuilder bool = QueryBuilders.boolQuery();
    // 2.2.关键字搜索
    bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.3.品牌过滤
    bool.filter(QueryBuilders.termQuery("brand", "德亚"));
    // 2.4.价格过滤
    bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
    request.source().query(bool);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}
算分函数查询

这里我们以后面的作业为例子,先传入之前写好的查询条件,然后写过滤条件(加了广告的),添加权重为10,与之前的算分相加

// 广告 直接添加权重10
FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(boolQuery,new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
        new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                QueryBuilders.termQuery("isAD",true),
                ScoreFunctionBuilders.weightFactorFunction(100000)
        )
}).boostMode(CombineFunction.SUM);

排序和分页

之前说过,requeset.source()就是整个请求JSON参数,所以排序、分页都是基于这个来设置,其DSL和JavaAPI的对比如下:
在这里插入图片描述

@Test
void testPageAndSort() throws IOException {
    int pageNo = 1, pageSize = 5;

    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.搜索条件参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.排序参数
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页参数
    request.source().from((pageNo - 1) * pageSize).size(pageSize);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

高亮

高亮查询与前面的查询有两点不同:

  • 条件同样是在request.source()中指定,只不过高亮条件要基于HighlightBuilder来构造
  • 高亮响应结果与搜索的文档结果不在一起,需要单独解析

首先来看高亮条件构造,其DSL和JavaAPI的对比如图:
在这里插入图片描述

@Test
void testHighlight() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.query条件
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.高亮条件
    request.source().highlighter(
            SearchSourceBuilder.highlight()
                    .field("name")
                    .preTags("<em>")
                    .postTags("</em>")
    );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

再来看结果解析,文档解析的部分不变,主要是高亮内容需要单独解析出来,其DSL和JavaAPI的对比如图:
在这里插入图片描述
代码解读:

  • 第3、4步:从结果中获取_source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象
  • 第5步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第5.1步:从Map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第5.2步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 最后:用高亮的结果替换ItemDoc中的非高亮结果
private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        // 5.获取高亮结果
        Map<String, HighlightField> hfs = hit.getHighlightFields();
        if (CollUtils.isNotEmpty(hfs)) {
            // 5.1.有高亮结果,获取name的高亮结果
            HighlightField hf = hfs.get("name");
            if (hf != null) {
                // 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
                String hfName = hf.getFragments()[0].string();
                item.setName(hfName);
            }
        }
        System.out.println(item);
    }
}

数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组
  • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
  • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
  • Avg:求平均值
  • Max:求最大值
  • Min:求最小值
  • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做进一步运算

Bucket聚合

例如我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket聚合中的Term聚合。

GET /items/_search
{
  "size": 0, 
  "aggs": {
    "category_agg": {
      "terms": {
        "field": "category",
        "size": 20
      }
    }
  }
}
  • size:设置size为0,就是每页查0条,则结果中就不包含文档,只包含聚合
  • aggs:定义聚合
    • category_agg:聚合名称,自定义,但不能重复
      • terms:聚合的类型,按分类聚合,所以用term
        • field:参与聚合的字段名称
        • size:希望返回的聚合结果的最大数量

带条件聚合

其实也很简单,先查询在分组

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

Metric聚合

我们统计了价格高于3000的手机品牌,形成了一个个桶。现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。
这就要用到Metric聚合了,例如stat聚合,就可以同时获取min、max、avg等结果。
语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      },
      "aggs": {
        "stats_meric": {
          "stats": {
            "field": "price"
          }
        }
      }
    }
  }
}

query部分就不说了,我们重点解读聚合部分语法。
可以看到我们在brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。

  • stats_meric:聚合名称
    • stats:聚合类型,stats是metric聚合的一种
      • field:聚合字段,这里选择price,统计价格

由于stats是对brand_agg形成的每个品牌桶内文档分别做统计,因此每个品牌都会统计出自己的价格最小、最大、平均值。
在这里插入图片描述

RestClient实现聚合

可以看到在DSL中,aggs聚合条件与query条件是同一级别,都属于查询JSON参数。因此依然是利用request.source()方法来设置。
不过聚合条件的要利用AggregationBuilders这个工具类来构造。DSL与JavaAPI的语法对比如下:
在这里插入图片描述
聚合结果与搜索文档同一级别,因此需要单独获取和解析。具体解析语法如下:
在这里插入图片描述

@Test
void testAgg() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.准备请求参数
    BoolQueryBuilder bool = QueryBuilders.boolQuery()
            .filter(QueryBuilders.termQuery("category", "手机"))
            .filter(QueryBuilders.rangeQuery("price").gte(300000));
    request.source().query(bool).size(0);
    // 3.聚合参数
    request.source().aggregation(
            AggregationBuilders.terms("brand_agg").field("brand").size(5)
    );
    // 4.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 5.解析聚合结果
    Aggregations aggregations = response.getAggregations();
    // 5.1.获取品牌聚合
    Terms brandTerms = aggregations.get("brand_agg");
    // 5.2.获取聚合中的桶
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 5.3.遍历桶内数据
    for (Terms.Bucket bucket : buckets) {
        // 5.4.获取桶内key
        String brand = bucket.getKeyAsString();
        System.out.print("brand = " + brand);
        long count = bucket.getDocCount();
        System.out.println("; count = " + count);
    }
}

网站公告

今日签到

点亮在社区的每一天
去签到