一、准备工作
1)安装好halcon,确保halcon的c++的调用是正常的
2)编译好opencv
上面的两个步骤,均可以参考我的两个博文完成:
Halcon在linux及ARM上的安装及c++工程化_halcon linux-CSDN博客
RK3588上编译opencv 及基于c++实现图像的读入-CSDN博客
二、代码准备
2.1 基于c++的opencv和halcon之间的图像的转换代码
// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{
HTuple channels;
HString cType;
cv::Mat Image;
ConvertImageType(imgHalcon, &imgHalcon, "byte");
CountChannels(imgHalcon, &channels);
Hlong width = 0;
Hlong height = 0;
if (channels[0].I() == 1)
{
HImage hImg(imgHalcon);
void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);
int W = width;
int H = height;
Image.create(H, W, CV_8UC1);
unsigned char *pdata = static_cast<unsigned char *>(ptr);
memcpy(Image.data, pdata, W*H);
}
else if (channels[0].I() == 3)
{
void *Rptr;
void *Gptr;
void *Bptr;
HImage hImg(imgHalcon);
hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);
int W = width;
int H = height;
Image.create(H, W, CV_8UC3);
vector<cv::Mat> VecM(3);
VecM[0].create(H, W, CV_8UC1);
VecM[1].create(H, W, CV_8UC1);
VecM[2].create(H, W, CV_8UC1);
unsigned char *R = (unsigned char *)Rptr;
unsigned char *G = (unsigned char *)Gptr;
unsigned char *B = (unsigned char *)Bptr;
memcpy(VecM[2].data, R, W*H);
memcpy(VecM[1].data, G, W*H);
memcpy(VecM[0].data, B, W*H);
cv::merge(VecM, Image);
}
return Image;
}
//OpenCV Mat -> Halcon HObject
HObject MatToHImage(Mat &imgMat)
{
HObject Hobj = HObject();
int height = imgMat.rows;
int width = imgMat.cols;
int i;
// CV_8UC3
if (imgMat.type() == CV_8UC3)
{
vector<cv::Mat> imgchannel;
split(imgMat, imgchannel);
cv::Mat imgB = imgchannel[0];
cv::Mat imgG = imgchannel[1];
cv::Mat imgR = imgchannel[2];
uchar* dataR = new uchar[height * width];
uchar* dataG = new uchar[height * width];
uchar* dataB = new uchar[height * width];
for (i = 0; i<height; i++)
{
memcpy(dataR + width*i, imgR.data + imgR.step*i, width);
memcpy(dataG + width*i, imgG.data + imgG.step*i, width);
memcpy(dataB + width*i, imgB.data + imgB.step*i, width);
}
GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);
delete[]dataR;
delete[]dataG;
delete[]dataB;
}
// CV_8UCU1
else if (imgMat.type() == CV_8UC1)
{
uchar* data = new uchar[height*width];
for (i = 0; i<height; i++)
memcpy(data + width*i, imgMat.data + imgMat.step*i, width);
GenImage1(&Hobj, "byte", width, height, (Hlong)data);
delete[] data;
}
return Hobj;
}
2.2 创建一个总执行的cpp
HalconDemo.cpp
#include <iostream>
#include <halconcpp/HalconCpp.h>
#include <opencv2/opencv.hpp>
using namespace HalconCpp;
using namespace std;
using namespace cv;
// 将halcon图像转换为opencv的图像
Mat HImageToMat(HObject &imgHalcon)
{
HTuple channels;
HString cType;
cv::Mat Image;
ConvertImageType(imgHalcon, &imgHalcon, "byte");
CountChannels(imgHalcon, &channels);
Hlong width = 0;
Hlong height = 0;
if (channels[0].I() == 1)
{
HImage hImg(imgHalcon);
void *ptr = hImg.GetImagePointer1(&cType, &width, &height);//GetImagePointer1(Hobj, &ptr, &cType, &wid, &hgt);
int W = width;
int H = height;
Image.create(H, W, CV_8UC1);
unsigned char *pdata = static_cast<unsigned char *>(ptr);
memcpy(Image.data, pdata, W*H);
}
else if (channels[0].I() == 3)
{
void *Rptr;
void *Gptr;
void *Bptr;
HImage hImg(imgHalcon);
hImg.GetImagePointer3(&Rptr, &Gptr, &Bptr, &cType, &width, &height);
int W = width;
int H = height;
Image.create(H, W, CV_8UC3);
vector<cv::Mat> VecM(3);
VecM[0].create(H, W, CV_8UC1);
VecM[1].create(H, W, CV_8UC1);
VecM[2].create(H, W, CV_8UC1);
unsigned char *R = (unsigned char *)Rptr;
unsigned char *G = (unsigned char *)Gptr;
unsigned char *B = (unsigned char *)Bptr;
memcpy(VecM[2].data, R, W*H);
memcpy(VecM[1].data, G, W*H);
memcpy(VecM[0].data, B, W*H);
cv::merge(VecM, Image);
}
return Image;
}
//OpenCV Mat -> Halcon HObject
HObject MatToHImage(Mat &imgMat)
{
HObject Hobj = HObject();
int height = imgMat.rows;
int width = imgMat.cols;
int i;
// CV_8UC3
if (imgMat.type() == CV_8UC3)
{
vector<cv::Mat> imgchannel;
split(imgMat, imgchannel);
cv::Mat imgB = imgchannel[0];
cv::Mat imgG = imgchannel[1];
cv::Mat imgR = imgchannel[2];
uchar* dataR = new uchar[height * width];
uchar* dataG = new uchar[height * width];
uchar* dataB = new uchar[height * width];
for (i = 0; i<height; i++)
{
memcpy(dataR + width*i, imgR.data + imgR.step*i, width);
memcpy(dataG + width*i, imgG.data + imgG.step*i, width);
memcpy(dataB + width*i, imgB.data + imgB.step*i, width);
}
GenImage3(&Hobj, "byte", width, height, (Hlong)dataR, (Hlong)dataG, (Hlong)dataB);
delete[]dataR;
delete[]dataG;
delete[]dataB;
}
// CV_8UCU1
else if (imgMat.type() == CV_8UC1)
{
uchar* data = new uchar[height*width];
for (i = 0; i<height; i++)
memcpy(data + width*i, imgMat.data + imgMat.step*i, width);
GenImage1(&Hobj, "byte", width, height, (Hlong)data);
delete[] data;
}
return Hobj;
}
Mat shape_find(cv::Mat image_opencv)
{
// Local iconic variables
HObject ho_Image800, ho_ROI_0, ho_ImageReduced;
HObject ho_ImagePart, ho_ImageReduced1, ho_Imagetest, ho_rImage;
HObject ho_ImageAffineTrans, ho_SymbolXLDs;
// Local control variables
HTuple hv_Area, hv_RowModel, hv_ColumnModel;
HTuple hv_ModelID1, hv_StartSeconds, hv_Row, hv_Column;
HTuple hv_Angle, hv_Scale1, hv_Score1, hv_model, hv_EndSeconds;
HTuple hv_HomMat2DImage, hv_DataCodeHandle, hv_ResultHandles;
HTuple hv_DecodedDataStrings;
cv::Mat image;
//加上这句就可以了,因为画的模板框在旋转到右边和左边时超出了图像范围,要允许与边缘相交才能找到
SetSystem("border_shape_models", "true");
SetSystem("int_zooming", "true");
//ReadImage(&ho_Image800, "../images/8.bmp");
ho_Image800=MatToHImage(image_opencv);
GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);
ReduceDomain(ho_Image800, ho_ROI_0, &ho_ImageReduced);
CropDomain(ho_ImageReduced, &ho_ImagePart);
GenRectangle1(&ho_ROI_0, 763.171, 559.159, 1444.96, 2025.97);
ReduceDomain(ho_ImagePart, ho_ROI_0, &ho_ImageReduced1);
AreaCenter(ho_ROI_0, &hv_Area, &hv_RowModel, &hv_ColumnModel);
CreateScaledShapeModel(ho_ImageReduced1, "auto", HTuple(0).TupleRad(), HTuple(360).TupleRad(),
HTuple(0.2).TupleRad(), 0.5, 2, "auto", "auto", "use_polarity", 40, 30, &hv_ModelID1);
ReadImage(&ho_Imagetest, "../images/9.bmp");
GenRectangle1(&ho_ROI_0, 2.06, 286.751, 1778.7, 2959.32);
ReduceDomain(ho_Imagetest, ho_ROI_0, &ho_ImageReduced);
CropDomain(ho_ImageReduced, &ho_rImage);
CountSeconds(&hv_StartSeconds);
FindScaledShapeModels(ho_rImage, hv_ModelID1, HTuple(0).TupleRad(), HTuple(360).TupleRad(),
0.5, 2, 0.4, 1, 1, "least_squares_high", (HTuple(5).Append(3)), 0.9, &hv_Row,
&hv_Column, &hv_Angle, &hv_Scale1, &hv_Score1, &hv_model);
CountSeconds(&hv_EndSeconds);
if (0 != (int((hv_Row.TupleLength())>0)))
{
std::cout << "find shape is ok " << endl;
VectorAngleToRigid(HTuple(hv_Row[0]), HTuple(hv_Column[0]), hv_Angle, HTuple(hv_RowModel[0]),
HTuple(hv_ColumnModel[0]), 0, &hv_HomMat2DImage);
AffineTransImage(ho_rImage, &ho_ImageAffineTrans, hv_HomMat2DImage, "constant", "false");
CreateDataCode2dModel("QR Code", HTuple(), HTuple(), &hv_DataCodeHandle);
FindDataCode2d(ho_ImageAffineTrans, &ho_SymbolXLDs, hv_DataCodeHandle, HTuple(),
HTuple(), &hv_ResultHandles, &hv_DecodedDataStrings);
std::cout << "QR Code" << ":" << hv_DecodedDataStrings.S() << endl;
image=HImageToMat(ho_ImageAffineTrans);
}
return image;
}
int main()
{
Mat image;
Mat image_opencv = imread("../9.bmp");
if (image_opencv.empty()) {
std::cerr << "Error opening image!" << std::endl;
return -1;
}
image=shape_find(image_opencv);
cout<<"hello";
std::string outputPath = "result.bmp";
imwrite(outputPath,image);
return 0;
}
2.3 CMakeLists.txt
cmake_minimum_required(VERSION 3.0.0)
project(HalconDemo VERSION 0.1.0)
set(TARGET_NAME HalconDemo)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_CXX_EXTENSIONS OFF)
set(OpenCV_DIR "/usr/local/opencv470") # 根据实际安装路径修改
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# 添加头文件搜索路径
include_directories(include)
link_directories(/opt/halcon/lib/aarch64-linux)
aux_source_directory(. SRCS )
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -static-libstdc++ -fPIC -Wl,--copy-dt-needed-entries -Wno-error=deprecated-declarations -Wno-deprecated-declarations ")
# 寻找./src下面所有.cpp为后缀的源文件,并且保存到SRC变量里面
file(GLOB_RECURSE SRC ./src/*.cpp)
# 编译SRC变量存储的源文件,编译生成目标文件命名为hello
add_executable(hello ${SRC})
#add_library(hello SHARED src/HalconDemo.cpp)
target_link_libraries(hello halcon halconcpp hdevenginecpp)
target_link_libraries(hello ${OpenCV_LIBS})
2.4 编译及运行
mkdir build
cd build
cmake ..
make
./hello