OpenCV训练题

发布于:2025-04-22 ⋅ 阅读:(71) ⋅ 点赞:(0)

一、创建一个 PyQt 应用程序,该应用程序能够:

  1. 使用 OpenCV 加载一张图像。
  2. 在 PyQt 的窗口中显示这张图像。
  3. 提供四个按钮(QPushButton):
  • 一个用于将图像转换为灰度图
  • 一个用于将图像恢复为原始彩色图
  • 一个用于将图像进行翻转
  • 一个用于将图像进行旋转
  • 4.当用户点击按钮时,相应地更新窗口中显示的图像。
import sys
import cv2
from PyQt6.QtGui import QImage, QPixmap
from PyQt6.QtWidgets import QWidget, QApplication, QLabel, QPushButton
from PyQt6 import uic


# 封装一个我的窗口类
class MyWidget(QWidget):
    def __init__(self):
        super().__init__()
        # 通过 uic 将 ui 界面加载到程序中来
        ui = uic.loadUi("./form.ui", self)

        # 加载图像
        self.original_image = cv2.imread("../images/lena.png")
        if self.original_image is None:
            print("无法加载图像,请检查图像路径。")
            sys.exit(1)
        self.current_image = self.original_image.copy()

        self.label: QLabel = ui.label
        self.btn1: QPushButton = ui.btn1
        self.btn2: QPushButton = ui.btn2
        self.btn3: QPushButton = ui.btn3
        self.btn4: QPushButton = ui.btn4

        # 显示原始图像
        self.display_image(self.current_image)
        self.label.setScaledContents(True)

        # 连接按钮信号和槽函数
        self.btn1.clicked.connect(self.convert_to_gray)
        self.btn2.clicked.connect(self.restore_color)
        self.btn3.clicked.connect(self.flip_image)
        self.btn4.clicked.connect(self.rotate_image)

    def display_image(self, image):
        height, width, channel = image.shape
        bytes_per_line = 3 * width
        q_img = QImage(image.data, width, height, bytes_per_line, QImage.Format.Format_BGR888)
        pixmap = QPixmap.fromImage(q_img)
        self.label.setPixmap(pixmap)

    def convert_to_gray(self):
        self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2GRAY)
        self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_GRAY2BGR)
        self.display_image(self.current_image)

    def restore_color(self):
        self.current_image = self.original_image.copy()
        self.display_image(self.current_image)

    def flip_image(self):
        self.current_image = cv2.flip(self.current_image, 1)
        self.display_image(self.current_image)

    def rotate_image(self):
        self.current_image = cv2.rotate(self.current_image, cv2.ROTATE_90_CLOCKWISE)
        self.display_image(self.current_image)


if __name__ == '__main__':
    app = QApplication(sys.argv)
    myWidget = MyWidget()
    myWidget.show()
    sys.exit(app.exec())

结果展示:

二、创建一个 PyQt 应用程序,该应用程序能够:

  1. 使用 OpenCV 加载一张彩色图像,并在 PyQt 的窗口中显示它。
  2. 提供一个滑动条(QSlider),允许用户调整图像的亮度。
  3. 当用户调整滑动条时,实时更新窗口中显示的图像亮度。
  4. 添加另一个滑动条(QSlider),允许用户调整图像的对比度。
  5. 当用户调整滚动条时,实时更新窗口中显示的图像对比度。
  6. 提供一个按钮(QPushButton),允许用户将图像保存为新的文件。
  7. 当用户点击保存按钮时,将调整后的图像保存到指定的路径,OpenCV中使用cv2.imwrite()来保存图片。
import sys
import cv2
from PyQt6.QtGui import QImage, QPixmap
from PyQt6.QtWidgets import QWidget, QApplication, QLabel, QPushButton, QSlider, QFileDialog
from PyQt6 import uic


class MyWidget(QWidget):
    def __init__(self):
        super().__init__()
        # 通过 uic 将 ui 界面加载到程序中来
        ui = uic.loadUi("./form1.ui", self)

        self.original_image = cv2.imread("../images/lena.png")
        if self.original_image is None:
            print("无法加载图像,请检查图像路径。")
            sys.exit(1)
        self.current_image = self.original_image.copy()

        self.label: QLabel = ui.label
        self.Slider1: QSlider = ui.Slider1
        self.Slider2: QSlider = ui.Slider2
        self.pushButton: QPushButton = ui.pushButton

        # 初始化滑动条范围
        self.Slider1.setRange(-100, 100)
        self.Slider2.setRange(0, 200)
        self.Slider1.setValue(0)
        self.Slider2.setValue(100)

        # 连接信号和槽
        self.Slider1.valueChanged.connect(self.adjust_brightness)
        self.Slider2.valueChanged.connect(self.adjust_contrast)
        self.pushButton.clicked.connect(self.save_image)

        self.display_image(self.current_image)
        self.label.setScaledContents(True)

    def display_image(self, image):
        height, width, channel = image.shape
        bytes_per_line = 3 * width
        q_img = QImage(image.data, width, height, bytes_per_line, QImage.Format.Format_BGR888)
        pixmap = QPixmap.fromImage(q_img)
        self.label.setPixmap(pixmap)

    def adjust_brightness(self, value):
        # 调整亮度
        alpha = 1.0
        beta = value
        self.current_image = cv2.convertScaleAbs(self.original_image, alpha=alpha, beta=beta)
        self.display_image(self.current_image)

    def adjust_contrast(self, value):
        # 调整对比度
        alpha = value / 100.0
        beta = 0
        self.current_image = cv2.convertScaleAbs(self.original_image, alpha=alpha, beta=beta)
        self.display_image(self.current_image)

    def save_image(self):
        # 选择保存路径
        file_path, _ = QFileDialog.getSaveFileName(self, "保存图像", "", "图像文件 (*.png *.jpg *.jpeg)")
        if file_path:
            try:
                cv2.imwrite(file_path, self.current_image)
                print(f"图像已保存到 {file_path}")
            except Exception as e:
                print(f"保存图像时出错: {e}")


if __name__ == '__main__':
    app = QApplication(sys.argv)
    myWidget = MyWidget()
    myWidget.show()
    sys.exit(app.exec())

 结果展示:

三、创建一个 PyQt 应用程序,该应用程序能够:

  1. 使用 OpenCV 加载一张图像。
  2. 在 PyQt 的窗口中显示这张图像。
  3. 提供一个下拉列表(QComboBox),对图像做(模糊、锐化、边缘检测)处理:
  • 模糊——使用cv2.GaussianBlur()实现
  • 锐化——使用cv2.Laplacian()、cv2.Sobel()实现
  • 边缘检测——使用cv2.Canny()实现
  1. 当用户点击下拉列表选项时,相应地更新窗口中显示的图像。
  2. 提供一个按钮,当用户点击按钮时,能保存调整后的图像。

import sys
import cv2
from PyQt6.QtGui import QImage, QPixmap
from PyQt6.QtWidgets import QWidget, QApplication, QLabel, QPushButton, QSlider, QFileDialog, QComboBox
from PyQt6 import uic


# 封装一个我的窗口类
class MyWidget(QWidget):
    def __init__(self):
        super().__init__()
        # 通过uic将ui界面加载到程序中来
        ui = uic.loadUi("./form2.ui",self)

        self.original_image = cv2.imread("../images/lena.png")
        if self.original_image is None:
            print("无法加载图像,请检查图像路径。")
            sys.exit(1)
        self.current_image = self.original_image.copy()

        self.label: QLabel = ui.label
        self.comboBox:QComboBox = ui.comboBox
        self.pushButton:QPushButton = ui.pushButton

        self.comboBox.addItems(["原始图像","模糊处理","锐化处理","边缘检测"])

        self.display_image(self.current_image)
        self.label.setScaledContents(True)

        self.comboBox.currentIndexChanged.connect(self.comboBox_slot)
        self.pushButton.clicked.connect(self.save_image)

    def display_image(self, image):
        height, width, channel = image.shape
        bytes_per_line = 3 * width
        q_img = QImage(image.data, width, height, bytes_per_line, QImage.Format.Format_BGR888)
        pixmap = QPixmap.fromImage(q_img)
        self.label.setPixmap(pixmap)

    def comboBox_slot(self):
        if self.comboBox.currentText() == "原始图像":
            self.current_image = self.original_image.copy()
        elif self.comboBox.currentText() == "模糊处理":
            self.current_image = cv2.GaussianBlur(self.original_image,(5,5),0)
        elif self.comboBox.currentText() == "锐化处理":
            laplacian = cv2.Laplacian(self.original_image,cv2.CV_64F)
            self.current_image = cv2.convertScaleAbs(laplacian)
        elif self.comboBox.currentText() == "边缘检测":
            # 使用 Canny 边缘检测
            self.current_image = cv2.Canny(self.original_image, 100, 200)
            # 转换为三通道图像以便显示
            self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_GRAY2BGR)

        self.display_image(self.current_image)

    def save_image(self):
        # 选择保存路径
        file_path, _ = QFileDialog.getSaveFileName(self, "保存图像", "", "图像文件 (*.png *.jpg *.jpeg)")
        if file_path:
            try:
                cv2.imwrite(file_path, self.current_image)
                print(f"图像已保存到 {file_path}")
            except Exception as e:
                print(f"保存图像时出错: {e}")


if __name__ == '__main__':
    app = QApplication(sys.argv)
    myWidget = MyWidget()
    myWidget.show()
    sys.exit(app.exec())

结果展示:

 

四、请编写一段Python代码,实现以下功能:

  1. 读取一张二维码图片
  2. 进行二值化处理和形态学操作,获取二维码轮廓
  3. 通过轮廓外接特征检测或者多边形逼近等获取 二维码的四个点
  4. 进行透视变换,矫正二维码图像
import cv2
import numpy as np


def order_points(pts):
    """对四个点进行排序:左上,右上,右下,左下"""
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]  # 左上(x+y最小)
    rect[2] = pts[np.argmax(s)]  # 右下(x+y最大)

    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]  # 右上(y-x最小)
    rect[3] = pts[np.argmax(diff)]  # 左下(y-x最大)
    return rect


# 1. 读取图片
image = cv2.imread('../images/erwei.jpg')
image = cv2.resize(image,(0,0),fx=0.5,fy=0.5)
orig = image.copy()

# 2. 预处理
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
_, thresh = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 形态学操作(闭运算填充内部空隙)
kernel = np.ones((3, 3), np.uint8)
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)

# 3. 轮廓检测
contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 筛选最大轮廓并进行多边形逼近
max_area = 0
screen_pts = None
for cnt in contours:
    area = cv2.contourArea(cnt)
    if area < 1000:  # 过滤小面积噪声
        continue
    peri = cv2.arcLength(cnt, True)
    approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
    if len(approx) == 4:
        if area > max_area:
            max_area = area
            screen_pts = approx.reshape(4, 2)

if screen_pts is None:
    raise ValueError("未检测到二维码轮廓")

# 4. 透视变换
rect = order_points(screen_pts)
(tl, tr, br, bl) = rect

# 计算目标图像尺寸
width_a = np.linalg.norm(br - bl)
width_b = np.linalg.norm(tr - tl)
max_width = max(int(width_a), int(width_b))

height_a = np.linalg.norm(tr - br)
height_b = np.linalg.norm(tl - bl)
max_height = max(int(height_a), int(height_b))

# 目标点坐标
dst = np.array([
    [0, 0],
    [max_width - 1, 0],
    [max_width - 1, max_height - 1],
    [0, max_height - 1]], dtype="float32")

# 计算变换矩阵并执行变换
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(orig, M, (max_width, max_height))

# 显示结果
cv2.imshow("Original", orig)
cv2.imshow("Corrected QR Code", warped)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、 请编写一段Python代码,实现以下功能:

  1. 读取一张彩色图像
  2. 制作要提取颜色的掩膜
  3. 输出抠图后的前景图 和 背景图

import cv2
import numpy as np

def extract_colors(image_path):
    # 1. 读取彩色图像
    img = cv2.imread(image_path)
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    # 2. 定义颜色范围(示例:提取红色系)
    # 可根据需求修改阈值范围
    lower_red1 = np.array([0, 43, 46])     # 红色HSV下限1
    upper_red1 = np.array([10, 255, 255])    # 红色HSV上限1
    lower_red2 = np.array([156, 43, 46])   # 红色HSV下限2(处理色相环闭合)
    upper_red2 = np.array([180, 255, 255])   # 红色HSV上限2

    # 生成掩膜
    mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
    mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
    mask = cv2.bitwise_or(mask1, mask2)

    # 形态学优化(填充空洞、去除噪声)
    kernel = np.ones((5,5), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)

    # 3. 分割前景和背景
    foreground = cv2.bitwise_and(img, img, mask=mask)
    background = cv2.bitwise_and(img, img, mask=cv2.bitwise_not(mask))

    # 4. 显示结果
    # cv2.imshow("Original", img)
    cv2.imshow("Foreground", foreground)
    cv2.imshow("Background", background)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 执行函数(替换为你的图片路径)
extract_colors("../images/redflowers.png")

 结果展示:


网站公告

今日签到

点亮在社区的每一天
去签到