大模型项目:普通蓝牙音响接入DeepSeek,解锁语音交互新玩法

发布于:2025-05-12 ⋅ 阅读:(14) ⋅ 点赞:(0)

本文附带视频讲解

【代码宇宙019】技术方案:蓝牙音响接入DeepSeek,解锁语音交互新玩法_哔哩哔哩_bilibili


目录

效果演示

核心逻辑

技术实现

大模型对话(技术: LangChain4j 接入 DeepSeek)

语音识别(技术:阿里云-实时语音识别)

语音生成(技术:阿里云-语音生成)

效果演示

核心逻辑

技术实现

大模型对话(技术: LangChain4j 接入 DeepSeek)

常用依赖都在这里(不是最简),DeepSeek 目前没有单独的依赖,用 open-ai 协议的依赖可以兼容,官网这里有说明:OpenAI Official SDK | LangChain4j

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-open-ai</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-spring-boot-starter</artifactId>
    <version>1.0.0-beta3</version>
</dependency>

请求 ds 的核心类

package ai.voice.assistant.client;

/**
 * @Author:超周到的程序员
 * @Date:2025/4/25
 */

import ai.voice.assistant.config.DaemonProcess;
import ai.voice.assistant.service.llm.BaseChatClient;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.data.message.SystemMessage;
import dev.langchain4j.data.message.UserMessage;
import dev.langchain4j.model.chat.response.ChatResponse;
import dev.langchain4j.model.chat.response.StreamingChatResponseHandler;
import dev.langchain4j.model.openai.OpenAiStreamingChatModel;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;

import com.alibaba.fastjson.JSON;

@Component("deepSeekStreamClient")
public class DeepSeekStreamClient implements BaseChatClient {
    private static final Logger LOGGER = LogManager.getLogger(DeepSeekStreamClient.class);

    @Value("${certificate.llm.deepseek.key}")
    private String key;

    @Override
    public String chat(String question) {
       if (question.isBlank()) {
           return "";
       }

        OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder()
                .baseUrl("https://api.deepseek.com")
                .apiKey(key)
                .modelName("deepseek-chat")
                .build();

        List<ChatMessage> messages = new ArrayList<>();
        messages.add(SystemMessage.from(prompt));
        messages.add(UserMessage.from(question));

        CountDownLatch countDownLatch = new CountDownLatch(1);

        StringBuilder answerBuilder = new StringBuilder();
        model.chat(messages, new StreamingChatResponseHandler() {
            @Override
            public void onPartialResponse(String answerSplice) {
                // 语音生成(流式)

//                voiceGenerateStreamService.process(new String[] {answerSplice});
//                System.out.println("== answerSplice: " + answerSplice);
                answerBuilder.append(answerSplice);
            }

            @Override
            public void onCompleteResponse(ChatResponse chatResponse) {
                countDownLatch.countDown();
            }

            @Override
            public void onError(Throwable throwable) {
                LOGGER.error("chat ds error, messages:{} err:", JSON.toJSON(messages), throwable);
            }
        });
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        String answer = answerBuilder.toString();

        LOGGER.info("chat ds end, answer:{}", answer);

        return answer;
    }
}

语音识别(技术:阿里云-实时语音识别)

开发参考_智能语音交互(ISI)-阿里云帮助中心

开发日志记录——

这里在我的场景下遇到了会话断连的问题:

  • 问题场景:阿里的实时语音识别,第一次对话后 10s 如果不说话那么会断开连接(阿里侧避免过多无用连接占用),本次做的蓝牙音响诉求是让他一直保活不断开,有需要就和它对话并且不想要唤醒词
  • 解决方式:因此这里用了 catch 断连异常后再次执行监听方法的方式来兼容这个问题,其实也可以定时发送一个空包过去,但是那样不确定会不会额外增加费用,另外也要处理同时发送空包和人进行语音对话的问题,最终生成的音频文件播放哪个的顺序问题

<dependency>
    <groupId>com.alibaba.nls</groupId>
    <artifactId>nls-sdk-tts</artifactId>
    <version>${ali-vioce-sdk.version}</version>
</dependency>
<dependency>
    <groupId>com.alibaba.nls</groupId>
    <artifactId>nls-sdk-transcriber</artifactId>
    <version>${ali-vioce-sdk.version}</version>
</dependency>

package ai.voice.assistant.service.voice;

import ai.voice.assistant.config.VoiceConfig;
import ai.voice.assistant.service.llm.BaseChatClient;
import ai.voice.assistant.util.WavPlayerUtil;
import com.alibaba.nls.client.protocol.Constant;
import com.alibaba.nls.client.protocol.InputFormatEnum;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriber;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberListener;
import com.alibaba.nls.client.protocol.asr.SpeechTranscriberResponse;
import jakarta.annotation.PreDestroy;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Service;

import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.TargetDataLine;

/**
 * @Author:超周到的程序员
 * @Date:2025/4/23 此示例演示了从麦克风采集语音并实时识别的过程
 * (仅作演示,需用户根据实际情况实现)
 */
@Service
public class VoiceRecognitionService {
    private static final Logger LOGGER = LoggerFactory.getLogger(VoiceRecognitionService.class);

    @Autowired
    private NlsClient client;
    @Autowired
    private VoiceConfig voiceConfig;
    @Autowired
    private VoiceGenerateService voiceGenerateService;
    @Autowired
//    @Qualifier("deepSeekStreamClient")
    @Qualifier("deepSeekMemoryClient")
    private BaseChatClient chatClient;

    public SpeechTranscriberListener getTranscriberListener() {
        SpeechTranscriberListener listener = new SpeechTranscriberListener() {
            //识别出中间结果.服务端识别出一个字或词时会返回此消息.仅当setEnableIntermediateResult(true)时,才会有此类消息返回
            @Override
            public void onTranscriptionResultChange(SpeechTranscriberResponse response) {
                // 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
                LOGGER.info("name: {}, status: {}, index: {}, result: {}, time: {}",
                        response.getName(),
                        response.getStatus(),
                        response.getTransSentenceIndex(),
                        response.getTransSentenceText(),
                        response.getTransSentenceTime());
            }

            @Override
            public void onTranscriberStart(SpeechTranscriberResponse response) {
                LOGGER.info("task_id: {}, name: {}, status: {}",
                        response.getTaskId(),
                        response.getName(),
                        response.getStatus());
            }

            @Override
            public void onSentenceBegin(SpeechTranscriberResponse response) {
                LOGGER.info("task_id: {}, name: {}, status: {}",
                        response.getTaskId(),
                        response.getName(),
                        response.getStatus());
            }

            //识别出一句话.服务端会智能断句,当识别到一句话结束时会返回此消息
            @Override
            public void onSentenceEnd(SpeechTranscriberResponse response) {
                LOGGER.info("name: {}, status: {}, index: {}, result: {}, confidence: {}, begin_time: {}, time: {}",
                        response.getName(),
                        response.getStatus(),
                        response.getTransSentenceIndex(),
                        response.getTransSentenceText(),
                        response.getConfidence(),
                        response.getSentenceBeginTime(),
                        response.getTransSentenceTime());

                if (response.getName().equals(Constant.VALUE_NAME_ASR_SENTENCE_END)) {
                    if (response.getStatus() == 20000000) {
                        // 识别完一句话,调用大模型
                        String answer = chatClient.chat(response.getTransSentenceText());
                        voiceGenerateService.process(answer);
                        WavPlayerUtil.playWavFile("/Users/zhoulongchao/Desktop/file_code/project/p_me/ai-voice-assistant/tts_test.wav");
                    }
                }
            }

            //识别完毕
            @Override
            public void onTranscriptionComplete(SpeechTranscriberResponse response) {
                LOGGER.info("task_id: {}, name: {}, status: {}",
                        response.getTaskId(),
                        response.getName(),
                        response.getStatus());
            }

            @Override
            public void onFail(SpeechTranscriberResponse response) {
                // 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
                LOGGER.info("语音识别 task_id: {}, status: {}, status_text: {}",
                        response.getTaskId(),
                        response.getStatus(),
                        response.getStatusText());
            }
        };

        return listener;
    }

    public void process() {
        SpeechTranscriber transcriber = null;
        try {
            // 创建实例,建立连接
            transcriber = new SpeechTranscriber(client, getTranscriberListener());
            transcriber.setAppKey(voiceConfig.getAppKey());
            // 输入音频编码方式
            transcriber.setFormat(InputFormatEnum.PCM);
            // 输入音频采样率
            transcriber.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);
            // 是否返回中间识别结果
            transcriber.setEnableIntermediateResult(true);
            // 是否生成并返回标点符号
            transcriber.setEnablePunctuation(true);
            // 是否将返回结果规整化,比如将一百返回为100
            transcriber.setEnableITN(false);

            //此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认
            transcriber.start();

            AudioFormat audioFormat = new AudioFormat(16000.0F, 16, 1, true, false);
            DataLine.Info info = new DataLine.Info(TargetDataLine.class, audioFormat);
            TargetDataLine targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
            targetDataLine.open(audioFormat);
            targetDataLine.start();
            System.out.println("You can speak now!");
            int nByte = 0;
            final int bufSize = 3200;
            byte[] buffer = new byte[bufSize];
            while ((nByte = targetDataLine.read(buffer, 0, bufSize)) > 0) {
                // 直接发送麦克风数据流
                transcriber.send(buffer, nByte);
            }

            transcriber.stop();
        } catch (Exception e) {
            LOGGER.info("语音识别 error: {}", e.getMessage());
            // 临时兼容,用于保持连接在逻辑上不断开,否则默认10s不说话会自动断连
            process();
        } finally {
            if (null != transcriber) {
                transcriber.close();
            }
        }
    }

    @PreDestroy
    public void shutdown() {
        client.shutdown();
    }
}

语音生成(技术:阿里云-语音生成)

开发参考_智能语音交互(ISI)-阿里云帮助中心

开发日志记录——

  • 非线程安全:在调用完阿里的语音生成能力后,得到了音频文件,和播放打通的方法是建立一个临时文件,生成和播放都路由到这个文件,因为这个项目只是个人方便分阶段单元测试用可以这么写,如果有多个客户端,那么这种方式就不是线程安全的
  • 回答延迟:这里我是使用的普通版的语音合成能力,初次接入支持免费体验 3 个月,其实可以使用流式语音合成能力,是另一个 sdk,具体可见文档:流式文本语音合成使用说明_智能语音交互(ISI)-阿里云帮助中心 因为目前流式语音合成能力需要付费,因此没有接入流式,因此每次需要收集完 ds 大模型的回答流之后才可以进行语音生成,会有 8s 延迟

官网有 100 多种音色可以选:

<dependency>
    <groupId>com.alibaba.nls</groupId>
    <artifactId>nls-sdk-tts</artifactId>
    <version>${ali-vioce-sdk.version}</version>
</dependency>
<dependency>
    <groupId>com.alibaba.nls</groupId>
    <artifactId>nls-sdk-transcriber</artifactId>
    <version>${ali-vioce-sdk.version}</version>
</dependency>

package ai.voice.assistant.service.voice;

import ai.voice.assistant.config.VoiceConfig;
import com.alibaba.nls.client.protocol.NlsClient;
import com.alibaba.nls.client.protocol.OutputFormatEnum;
import com.alibaba.nls.client.protocol.SampleRateEnum;
import com.alibaba.nls.client.protocol.tts.;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerListener;
import com.alibaba.nls.client.protocol.tts.SpeechSynthesizerResponse;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.concurrent.ScheduledExecutorService;

/**
 * @Author:超周到的程序员
 * @Date:2025/4/23
 * 语音合成API调用
 * 流式合成TTS
 * 首包延迟计算
 */
@Service
public class VoiceGenerateService {
    private static final Logger LOGGER = LoggerFactory.getLogger(VoiceGenerateService.class);
    private static long startTime;

    @Autowired
    private VoiceConfig voiceConfig;

    @Autowired
    private NlsClient client;

    private static SpeechSynthesizerListener getSynthesizerListener() {
        SpeechSynthesizerListener listener = null;
        try {
            listener = new SpeechSynthesizerListener() {
                File f = new File("tts_test.wav");
                FileOutputStream fout = new FileOutputStream(f);
                private boolean firstRecvBinary = true;

                //语音合成结束
                @Override
                public void onComplete(SpeechSynthesizerResponse response) {
                    // TODO 当onComplete时表示所有TTS数据已经接收完成,因此这个是整个合成延迟,该延迟可能较大,未必满足实时场景
                    LOGGER.info("name:{} status:{} outputFile:{}", response.getStatus(), f.getAbsolutePath(), response.getName());
                }

                //语音合成的语音二进制数据
                @Override
                public void onMessage(ByteBuffer message) {
                    try {
                        if (firstRecvBinary) {
                            // TODO 此处是计算首包语音流的延迟,收到第一包语音流时,即可以进行语音播放,以提升响应速度(特别是实时交互场景下)
                            firstRecvBinary = false;
                            long now = System.currentTimeMillis();
                            LOGGER.info("tts first latency : " + (now - VoiceGenerateService.startTime) + " ms");
                        }
                        byte[] bytesArray = new byte[message.remaining()];
                        message.get(bytesArray, 0, bytesArray.length);
                        fout.write(bytesArray);
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }

                @Override
                public void onFail(SpeechSynthesizerResponse response) {
                    // TODO 重要提示: task_id很重要,是调用方和服务端通信的唯一ID标识,当遇到问题时,需要提供此task_id以便排查
                    LOGGER.info("语音合成 task_id: {}, status: {}, status_text: {}",
                            response.getTaskId(),
                            response.getStatus(),
                            response.getStatusText());
                }

                @Override
                public void onMetaInfo(SpeechSynthesizerResponse response) {
//                    System.out.println("MetaInfo event:{}" + response.getTaskId());
                }
            };
        } catch (Exception e) {
            e.printStackTrace();
        }
        return listener;
    }

    public void process(String text) {
        SpeechSynthesizer synthesizer = null;
        try {
            //创建实例,建立连接
            synthesizer = new SpeechSynthesizer(client, getSynthesizerListener());
            synthesizer.setAppKey(voiceConfig.getAppKey());
            //设置返回音频的编码格式
            synthesizer.setFormat(OutputFormatEnum.WAV);
            //设置返回音频的采样率
            synthesizer.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);
            //发音人
            synthesizer.setVoice("jielidou");
            //语调,范围是-500~500,可选,默认是0
            synthesizer.setPitchRate(50);
            //语速,范围是-500~500,默认是0
            synthesizer.setSpeechRate(30);
            //设置用于语音合成的文本
            synthesizer.setText(text);

            synthesizer.addCustomedParam("enable_subtitle", true);

            //此方法将以上参数设置序列化为json发送给服务端,并等待服务端确认
            long start = System.currentTimeMillis();
            synthesizer.start();
            LOGGER.info("tts start latency " + (System.currentTimeMillis() - start) + " ms");

            VoiceGenerateService.startTime = System.currentTimeMillis();

            //等待语音合成结束
            synthesizer.waitForComplete();
            LOGGER.info("tts stop latency " + (System.currentTimeMillis() - start) + " ms");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //关闭连接
            if (null != synthesizer) {
                synthesizer.close();
            }
        }
    }

    public void shutdown() {
        client.shutdown();
    }
}


网站公告

今日签到

点亮在社区的每一天
去签到