目标检测任务 - 数据增强

发布于:2025-05-13 ⋅ 阅读:(16) ⋅ 点赞:(0)

目标检测任务 - DETR : 数据预处理/数据增强 算法源码实例

import datasets.transforms as T

normalize = T.Compose([
    T.ToTensor(),
    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]

if image_set == 'train':
    return T.Compose([
        T.RandomHorizontalFlip(),
        T.RandomSelect(
            T.RandomResize(scales, max_size=1333),
            T.Compose([
                T.RandomResize([400, 500, 600]),
                T.RandomSizeCrop(384, 600),
                T.RandomResize(scales, max_size=1333),
            ])
        ),
        normalize,
    ])

if image_set == 'val':
    return T.Compose([
        T.RandomResize([800], max_size=1333),
        normalize,
    ])

以下为 datasets/transforms.py 文件

# datasets/transforms.py
import random

import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F

from util.box_ops import box_xyxy_to_cxcywh
from util.misc import interpolate


def crop(image, target, region):
    cropped_image = F.crop(image, *region)

    target = target.copy()
    i, j, h, w = region

    # should we do something wrt the original size?
    target["size"] = torch.tensor([h, w])

    fields = ["labels", "area", "iscrowd"]

    if "boxes" in target:
        boxes = target["boxes"]
        max_size = torch.as_tensor([w, h], dtype=torch.float32)
        cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
        cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
        cropped_boxes = cropped_boxes.clamp(min=0)
        area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
        target["boxes"] = cropped_boxes.reshape(-1, 4)
        target["area"] = area
        fields.append("boxes")

    if "masks" in target:
        # FIXME should we update the area here if there are no boxes?
        target['masks'] = target['masks'][:, i:i + h, j:j + w]
        fields.append("masks")


    # remove elements for which the boxes or masks that have zero area
    if "boxes" in target or "masks" in target:
        # favor boxes selection when defining which elements to keep
        # this is compatible with previous implementation
        if "boxes" in target:
            cropped_boxes = target['boxes'].reshape(-1, 2, 2)
            keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
        else:
            keep = target['masks'].flatten(1).any(1)

        for field in fields:
            target[field] = target[field][keep]

    return cropped_image, target


def hflip(image, target):
    flipped_image = F.hflip(image)

    w, h = image.size

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
        target["boxes"] = boxes

    if "masks" in target:
        target['masks'] = target['masks'].flip(-1)

    return flipped_image, target


def resize(image, target, size, max_size=None):
    # size can be min_size (scalar) or (w, h) tuple

    def get_size_with_aspect_ratio(image_size, size, max_size=None):
        w, h = image_size
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (h, w)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (oh, ow)

    def get_size(image_size, size, max_size=None):
        if isinstance(size, (list, tuple)):
            return size[::-1]
        else:
            return get_size_with_aspect_ratio(image_size, size, max_size)

    size = get_size(image.size, size, max_size)
    rescaled_image = F.resize(image, size)

    if target is None:
        return rescaled_image, None

    ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
    ratio_width, ratio_height = ratios

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
        target["boxes"] = scaled_boxes

    if "area" in target:
        area = target["area"]
        scaled_area = area * (ratio_width * ratio_height)
        target["area"] = scaled_area

    h, w = size
    target["size"] = torch.tensor([h, w])

    if "masks" in target:
        target['masks'] = interpolate(
            target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5

    return rescaled_image, target


def pad(image, target, padding):
    # assumes that we only pad on the bottom right corners
    padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
    if target is None:
        return padded_image, None
    target = target.copy()
    # should we do something wrt the original size?
    target["size"] = torch.tensor(padded_image.size[::-1])
    if "masks" in target:
        target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
    return padded_image, target


class ResizeDebug(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, target):
        return resize(img, target, self.size)


class RandomCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, target):
        region = T.RandomCrop.get_params(img, self.size)
        return crop(img, target, region)


class RandomSizeCrop(object):
    def __init__(self, min_size: int, max_size: int):
        self.min_size = min_size
        self.max_size = max_size

    def __call__(self, img: PIL.Image.Image, target: dict):
        w = random.randint(self.min_size, min(img.width, self.max_size))
        h = random.randint(self.min_size, min(img.height, self.max_size))
        region = T.RandomCrop.get_params(img, [h, w])
        return crop(img, target, region)


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, target):
        image_width, image_height = img.size
        crop_height, crop_width = self.size
        crop_top = int(round((image_height - crop_height) / 2.))
        crop_left = int(round((image_width - crop_width) / 2.))
        return crop(img, target, (crop_top, crop_left, crop_height, crop_width))


class RandomHorizontalFlip(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, target):
        if random.random() < self.p:
            return hflip(img, target)
        return img, target


class RandomResize(object):
    def __init__(self, sizes, max_size=None):
        assert isinstance(sizes, (list, tuple))
        self.sizes = sizes
        self.max_size = max_size

    def __call__(self, img, target=None):
        size = random.choice(self.sizes)
        return resize(img, target, size, self.max_size)


class RandomPad(object):
    def __init__(self, max_pad):
        self.max_pad = max_pad

    def __call__(self, img, target):
        pad_x = random.randint(0, self.max_pad)
        pad_y = random.randint(0, self.max_pad)
        return pad(img, target, (pad_x, pad_y))


class RandomSelect(object):
    """
    Randomly selects between transforms1 and transforms2,
    with probability p for transforms1 and (1 - p) for transforms2
    """
    def __init__(self, transforms1, transforms2, p=0.5):
        self.transforms1 = transforms1
        self.transforms2 = transforms2
        self.p = p

    def __call__(self, img, target):
        if random.random() < self.p:
            return self.transforms1(img, target)
        return self.transforms2(img, target)


class ToTensor(object):
    def __call__(self, img, target):
        return F.to_tensor(img), target


class RandomErasing(object):

    def __init__(self, *args, **kwargs):
        self.eraser = T.RandomErasing(*args, **kwargs)

    def __call__(self, img, target):
        return self.eraser(img), target


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target=None):
        image = F.normalize(image, mean=self.mean, std=self.std)
        if target is None:
            return image, None
        target = target.copy()
        h, w = image.shape[-2:]
        if "boxes" in target:
            boxes = target["boxes"]
            boxes = box_xyxy_to_cxcywh(boxes)
            boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
            target["boxes"] = boxes
        return image, target


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string

1)按概率随机选择做数据增强操作

class RandomSelect(object):
    """
    Randomly selects between transforms1 and transforms2,
    with probability p for transforms1 and (1 - p) for transforms2
    """
    def __init__(self, transforms1, transforms2, p=0.5):
        self.transforms1 = transforms1
        self.transforms2 = transforms2
        self.p = p

    def __call__(self, img, target):
        if random.random() < self.p:
            return self.transforms1(img, target)
        return self.transforms2(img, target)
        
        

T.RandomSelect(            # 按概率随机选择做数据增强操作
    T.RandomResize(scales, max_size=1333),
    T.Compose([
        T.RandomResize([400, 500, 600]),
        T.RandomSizeCrop(384, 600),
        T.RandomResize(scales, max_size=1333),
    ])
)

代码解读 :

  • 指定概率 p=0.5

    • 若 p < 0.5,执行 T.RandomResize(scales, max_size=1333)

    • 若 p > 0.5 ,执行 如下3个 数据增强操作

    • T.Compose([
                  T.RandomResize([400, 500, 600]),
                  T.RandomSizeCrop(384, 600),
                  T.RandomResize(scales, max_size=1333),
              ])

2)Compose

class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target

3)随机水平翻转 RandomHorizontalFlip

boxes 的形式为 (xmin, ymin, xmax, ymax)

import torchvision.transforms.functional as F

class RandomHorizontalFlip(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, target):
        if random.random() < self.p:
            return hflip(img, target)
        return img, target
        
        
def hflip(image, target):
    flipped_image = F.hflip(image)

    w, h = image.size

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
        target["boxes"] = boxes

    return flipped_image, target
    
    
img, target = RandomHorizontalFlip()(img, target)


4)随机缩放 RandomResize

boxes 的形式为 (xmin, ymin, xmax, ymax)

class RandomResize(object):
    def __init__(self, sizes, max_size=None):
        assert isinstance(sizes, (list, tuple))
        self.sizes = sizes
        self.max_size = max_size

    def __call__(self, img, target=None):
        size = random.choice(self.sizes)
        return resize(img, target, size, self.max_size)


def resize(image, target, size, max_size=None):
    # 获取缩放后的图像尺寸
    size = get_size(image.size, size, max_size)
    # 对图像进行缩放
    rescaled_image = F.resize(image, size)

    if target is None:
        return rescaled_image, None
    
    # 计算 高的缩放比例 和 宽的缩放比例
    ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
    ratio_width, ratio_height = ratios

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        # 将 bbox 的高宽分别按照 高的缩放比例 和 宽的缩放比例 进行调整
        scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
        target["boxes"] = scaled_boxes
    
    # 重新计算 bbox 的面积
    if "area" in target:
        area = target["area"]
        scaled_area = area * (ratio_width * ratio_height)
        target["area"] = scaled_area
        
    # 保存缩放后的高和宽
    h, w = size
    target["size"] = torch.tensor([h, w])

    if "masks" in target:
        target['masks'] = interpolate(
            target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5

    return rescaled_image, target


def get_size(image_size, size, max_size=None):
    if isinstance(size, (list, tuple)):
        return size[::-1]
    else:
        return get_size_with_aspect_ratio(image_size, size, max_size)


def get_size_with_aspect_ratio(image_size, size, max_size=None):
    w, h = image_size
   
    if max_size is not None:
        # 将size定为较短边长度,按照原始图像的长短比例(高宽比/宽高比),缩放图像较长边
        # 若缩放后图像的较长边大于最大尺寸 max_size, 则将较长边的长度定为 max_size,将
        # 较短边按照按照原始图像的比例进行调整
        min_original_size = float(min((w, h)))
        max_original_size = float(max((w, h)))
        if max_original_size / min_original_size * size > max_size:
            size = int(round(max_size * min_original_size / max_original_size))

    if (w <= h and w == size) or (h <= w and h == size):
        return (h, w)
        
    # 计算缩放后的图像高宽尺寸
    if w < h:
        ow = size
        oh = int(size * h / w)
    else:
        oh = size
        ow = int(size * w / h)

    return (oh, ow)
        

scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
img, target = RandomResize(scales, max_size=1333)(img, target)

5)随机尺寸裁剪 RandomSizeCrop 

 boxes 的形式为 (xmin, ymin, xmax, ymax)

class RandomSizeCrop(object):
    def __init__(self, min_size: int, max_size: int):
        self.min_size = min_size
        self.max_size = max_size

    def __call__(self, img: PIL.Image.Image, target: dict):
        # 在指定范围内,分别随机出 高/宽尺寸,用于裁剪
        w = random.randint(self.min_size, min(img.width, self.max_size))
        h = random.randint(self.min_size, min(img.height, self.max_size))
        # 返回的region为裁剪的尺寸,形为:(top, left, height, width)
        region = T.RandomCrop.get_params(img, [h, w])
        return crop(img, target, region)

   
def crop(image, target, region):
    # 将图像按照region 指定的尺寸进行裁剪
    cropped_image = F.crop(image, *region)

    target = target.copy()
    i, j, h, w = region

    # 保存裁剪后的尺寸
    target["size"] = torch.tensor([h, w])
    # 保存字段名,方便后面用于检查
    fields = ["labels", "area", "iscrowd"]

    if "boxes" in target:
        boxes = target["boxes"]
        
        # 将裁剪后的图像宽高转换为 tensor
        max_size = torch.as_tensor([w, h], dtype=torch.float32)
        
        # 调整bbox的坐标,将bbox的(xmin, ymin, xmax, ymax) 分别减去(left, top, left, top)
        cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
        
        # 处理边界情况,若bbox的坐标落在裁剪区域外,则将bbox的坐标进行截断
        cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)  # 处理bbox的xmax和ymax
        cropped_boxes = cropped_boxes.clamp(min=0)   # 处理bbox的xmin和ymin
        
        # 求出裁剪后的图像面积,代码等价于 :area =(xmax - xmin)*(ymax - ymin)
        area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)  
        
        target["boxes"] = cropped_boxes.reshape(-1, 4)
        target["area"] = area
        fields.append("boxes")

    if "masks" in target:
        # FIXME should we update the area here if there are no boxes?
        target['masks'] = target['masks'][:, i:i + h, j:j + w]
        fields.append("masks")

    if "boxes" in target or "masks" in target:
        # 删除落在裁剪区域外的bbox,这部分bbox经过上面的处理之后: xmin=xmax, ymin=ymax
        if "boxes" in target:
            cropped_boxes = target['boxes'].reshape(-1, 2, 2)
            keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
        else:
            keep = target['masks'].flatten(1).any(1)
            
        # 删除无效的bbox
        for field in fields:
            target[field] = target[field][keep]

    return cropped_image, target

torchvision.RandomCrop.get_params 用法:

region = torchvision.RandomCrop.get_params(img, output_size)

参数:

  • img: 要裁剪的图像,可以是 PIL Image 或 Tensor 对象。

  • output_size: 裁剪区域的大小,必须是元组,包含两个元素,表示裁剪区域的高度和宽度 [h, w] 。

返回值:

  • 一个元组,包含四个元素:

    • top: 裁剪区域的顶部坐标。

    • left: 裁剪区域的左侧坐标。

    • height: 裁剪区域的高度。

    • width: 裁剪区域的宽度。


6)ToTensor

class ToTensor(object):
    def __call__(self, img, target):
        return F.to_tensor(img), target
        
img, target = ToTensor()(img, target)

7)Normalize

class Normalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target=None):
        image = F.normalize(image, mean=self.mean, std=self.std)
        if target is None:
            return image, None
        target = target.copy()
        h, w = image.shape[-2:]
        if "boxes" in target:
            boxes = target["boxes"]
            boxes = box_xyxy_to_cxcywh(boxes)
            boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
            target["boxes"] = boxes
        return image, target
        
        
def box_xyxy_to_cxcywh(x):
    x0, y0, x1, y1 = x.unbind(-1)
    b = [(x0 + x1) / 2, (y0 + y1) / 2,
         (x1 - x0), (y1 - y0)]
    return torch.stack(b, dim=-1)
    
    
img, target = Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(img, target)

代码解读 :

  • 将图像的像素值进行归一化

  • 将 bbox 坐标由 (xmin, ymin, xmax, ymax) 转换为 (cx, cy, w, h)的形式

  • 将 (cx, cy, w, h)的取值分别除以 w, h, w, h,将坐标值都归一化到 0 ~1 之间,

  即,相对于 图像尺寸的 相对坐标



网站公告

今日签到

点亮在社区的每一天
去签到