一、术前阶段
1.1 数据采集与预处理系统
伪代码实现
def collect_patient_data(patient_id):
ct_images = load_dicom_files("path/to/ct_scans")
mri_images = load_nii_files("path/to/mri_scans")
vital_signs = get_vital_parameters("patient_records")
medical_history = parse_medical_records("text_records")
gene_data = fetch_gene_profile("genome_database", patient_id)
return {
"images": {
"CT": ct_images, "MRI": mri_images},
"vitals": vital_signs,
"history": medical_history,
"genes": gene_data
}
def preprocess_data(raw_data):
filled_vitals = fill_missing_values(raw_data["vitals"], method="mean")
normalized_ct = normalize_image(raw_data["images"]["CT"])
normalized_mri = normalize_image(raw_data["images"]["MRI"])
encoded_history = encode_categorical(raw_data["history"])
return {
"images": {
"CT": normalized_ct, "MRI": normalized_mri},
"vitals": filled_vitals,
"history": encoded_history
}
流程图
1.2 特征提取与选择模块
伪代码实现
def extract_imaging_features(ct_image):
segmented_mask = unet_predict(ct_image)
volume = calculate_volume(segmented_mask)
shape_features = extract_shape_descriptors(segmented_mask)
return {
**shape_features, "volume": volume}
def select_clinical_features(vitals, history):
feature_importance = xgboost_feature_selection(vitals + history)
selected_features = filter_top_features(feature_importance, threshold=0.1)
return selected_features
流程图