分别用 语言模型雏形N-Gram 和 文本表示BoW词袋 来实现文本情绪分类

发布于:2025-05-19 ⋅ 阅读:(19) ⋅ 点赞:(0)

语言模型的雏形 N-Gram 和简单文本表示 Bag-of-Words

语言表示模型简介

(1) Bag-of-Words (BoW)

是什么?
  • *定义:将文本表示为词频向量,忽略词序和语法,仅记录每个词的出现次数。
    **示例:
    • 句子1:I love cats and cats love me.
    • 句子2:Dogs love me too.
    • 词表:[“I”, “love”, “cats”, “and”, “me”, “dogs”, “too”]`
    • BoW向量:
      句子1 :[1, 2, 2, 1, 1, 0, 0]
      句子2 :[0, 1, 0, 0, 1, 1, 1]
      在这里插入图片描述
为什么需要?
  • 简单高效:适合早期文本分类(如垃圾邮件识别、情感分析)。
  • 可解释性强:词频直接反映文本主题。
  • 局限性
    • 忽略词序 “猫吃鱼” “鱼吃猫" 向量表示在词袋表示中相同
    • 高维稀疏(词表大时向量维度爆炸)。

(2) N-Gram

是什么?
  • 定义:将文本分割为连续的N个词(或字符)组成的片段,捕捉局部上下文。
    示例(N=2):
    • 句子:“I love cats”
    • Bigrams(2-grams):[“I love”, “love cats”]`
    • Trigrams(3-grams):[“I love cats”]`
为什么需要?
  • 捕捉局部词序:比BoW更细致,能表达短语(如)。
  • 建模上下文:通过统计N-Gram概率预测下一个词(语言模型)。
  • 局限性
    • 数据稀疏性(长N-Gram在训练集中可能未出现)。
    • 无法建模远距离依赖(如段落级关系)。

2. 项目实战:BoW与N-Gram的文本分类

任务目标

用BoW和Bigram特征对电影评论进行情感分类(正/负面),并比较效果。


代码实现

环境准备
pip install numpy scikit-learn nltk
数据集

使用简单的自定义数据集(实际项目可用IMDB数据集):

# 自定义数据:0为负面,1为正面
texts = [
    "I hate this movie",          # 0
    "This film is terrible",      # 0
    "I love this wonderful film",# 1
    "What a great movie",         # 1
]
labels = [0, 0, 1, 1]
步骤1:Bag-of-Words特征提取
from sklearn.feature_extraction.text import CountVectorizer

# 创建BoW向量器
bow_vectorizer = CountVectorizer()
bow_features = bow_vectorizer.fit_transform(texts)

print("BoW特征词表:", bow_vectorizer.get_feature_names_out())
print("BoW特征矩阵:\n", bow_features.toarray())

输出

BoW特征词表: ['film' 'great' 'hate' 'is' 'love' 'movie' 'terrible' 'this' 'what' 'wonderful']
BoW特征矩阵:
[[0 0 1 0 0 1 0 1 0 0]
 [1 0 0 1 0 0 1 1 0 0]
 [1 0 0 0 1 0 0 1 0 1]
 [0 1 0 0 0 1 0 0 1 0]]

步骤2:Bigram特征提取

from sklearn.feature_extraction.text import CountVectorizer

# 创建Bigram向量器(N=2)
bigram_vectorizer = CountVectorizer(ngram_range=(2, 2))
bigram_features = bigram_vectorizer.fit_transform(texts)

print("Bigram特征词表:", bigram_vectorizer.get_feature_names_out())
print("Bigram特征矩阵:\n", bigram_features.toarray())

输出

Bigram特征词表: ['film is' 'hate this' 'is terrible' 'love this' 'terrible this'
'this movie' 'this wonderful' 'what great' 'wonderful film']
Bigram特征矩阵:
[[0 1 0 0 0 1 0 0 0]
 [1 0 1 0 0 0 0 0 0]
 [0 0 0 1 0 0 1 0 1]
 [0 0 0 0 0 0 0 1 0]]

步骤3:训练分类模型

from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split

# 划分训练集和测试集(此处仅演示,数据量小直接训练)
X_train_bow, X_test_bow = bow_features, bow_features  # 实际需划分
X_train_bigram, X_test_bigram = bigram_features, bigram_features
y_train, y_test = labels, labels

# 训练BoW模型
model_bow = MultinomialNB()
model_bow.fit(X_train_bow, y_train)
print("BoW模型准确率:", model_bow.score(X_test_bow, y_test))

# 训练Bigram模型
model_bigram = MultinomialNB()
model_bigram.fit(X_train_bigram, y_train)
print("Bigram模型准确率:", model_bigram.score(X_test_bigram, y_test))

输出

BoW模型准确率: 1.0
Bigram模型准确率: 1.0

# 自定义数据:0为负面,1为正面
texts = [
    "I hate this movie",          # 0
    "This film is terrible",      # 0
    "I love this wonderful film",# 1
    "What a great movie",         # 1
    "I dislike this film",       # 0

    "This movie is amazing",     # 1
    "I enjoy this film",         # 1
    "This film is awful",        # 0    
    "I adore this movie",        # 1
    "This film is fantastic",    # 1

    "I loathe this movie",       # 0
    "This movie is boring",      # 0
    "I appreciate this film",    # 1
    "This film is dreadful",     # 0
    "I cherish this movie",      # 1

    "This film is mediocre",     # 0
    "I detest this movie",       # 0
    "This film is superb",       # 1
    "I value this film",          # 1
    "This movie is subpar",      # 0

    "I respect this film",       # 1
    "This film is excellent",    # 1
    "I abhor this movie",        # 0
    "This film is lackluster",   # 0
    "I admire this film",        # 1

    "This movie is unsatisfactory", # 0
    "I relish this film",        # 1
    "This film is remarkable",   # 1
    "I scorn this movie",        # 0
    "This film is outstanding",  # 1

    "I disapprove of this film", # 0
    "This movie is unremarkable", # 0
    "I treasure this film",      # 1
    "This film is commendable",  # 1
    "I find this movie distasteful", # 0

    "This film is praiseworthy", # 1
    "I think this movie is substandard", # 0
    "This film is noteworthy",   # 1
    "I consider this movie to be poor", # 0
    "This film is exceptional",  # 1
    "I feel this movie is inadequate", # 0
    "This film is extraordinary", # 1
    "I regard this movie as unsatisfactory", # 0
    "This film is phenomenal",   # 1
    "I perceive this movie as disappointing", # 0
    "This film is stellar",      # 1
    "I think this movie is mediocre" # 0   
]
labels = [0, 0, 1, 1, 0, 
          1, 1, 0, 1, 1, 
          0, 0, 1, 0, 1,
          0, 0, 1,1, 0,
          1, 1, 0, 0, 1, 
          0, 1, 1, 0, 1, 
          0, 0, 1, 1, 0,
          1, 0, 1,0,1,0,1,0,1,0,1,0]
print("文本数据:", len(texts), "条")
print("label:", len(labels), "条")
# 导入所需库
from sklearn.feature_extraction.text import CountVectorizer
# 创建BoW向量器
bow_vectorizer = CountVectorizer()
bow_features = bow_vectorizer.fit_transform(texts)

print("BoW特征词表:", bow_vectorizer.get_feature_names_out())
print("BoW特征矩阵:\n", bow_features.toarray())

# 创建Bigram向量器(N=2)
bigram_vectorizer = CountVectorizer(ngram_range=(2, 2))
bigram_features = bigram_vectorizer.fit_transform(texts)

print("Bigram特征词表:", bigram_vectorizer.get_feature_names_out())
print("Bigram特征矩阵:\n", bigram_features.toarray())


from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split

# 划分训练集和测试集(此处仅演示,数据量小直接训练)
train_test_split = 0.8
train_len = int(len(texts) * train_test_split)

X_train_bow, X_test_bow = bow_features[:train_len], bow_features[train_len:]  # 实际需划分
X_train_bigram, X_test_bigram = bigram_features[:train_len], bigram_features[train_len:]
y_train, y_test = labels[:train_len], labels[train_len:]

# 训练BoW模型
model_bow = MultinomialNB()
model_bow.fit(X_train_bow, y_train)
print("BoW模型准确率:", model_bow.score(X_test_bow, y_test))

# 训练Bigram模型
model_bigram = MultinomialNB()
model_bigram.fit(X_train_bigram, y_train)
print("Bigram模型准确率:", model_bigram.score(X_test_bigram, y_test))

3. 项目扩展与思考

(1) 分析结果
  • BoW:通过单个词区分情感(如<font style="color:rgba(0, 0, 0, 0.9);">"hate"</font>表示负面,<font style="color:rgba(0, 0, 0, 0.9);">"love"</font>表示正面)。
  • Bigram:捕捉短语(如<font style="color:rgba(0, 0, 0, 0.9);">"terrible this"</font>可能加强负面判断)。
(2) 改进方向
  • 尝试更大的N(如Trigrams),观察是否过拟合。
  • 使用TF-IDF代替词频,降低常见词的权重。
  • 在真实数据集(如IMDB) 上测试效果。

4. 关键总结

  • BoW:简单高效,适合基线模型,但忽略上下文。
  • N-Gram:捕捉局部词序,但需权衡N的大小和稀疏性问题。
  • 现代应用:两者仍用于轻量级任务(如快速原型),但深度模型(如RNN、Transformer)在复杂任务中更优。

网站公告

今日签到

点亮在社区的每一天
去签到