先安装miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh
chmod +x Miniconda3-latest-Linux-aarch64.sh
bash Miniconda3-latest-Linux-aarch64.sh
source ~/.bashrc
conda --version
按照MobileFaceNet的github官方指南,需要先配置以下依赖项:
- tensorflow >= r1.5
- opencv-python 3.x
- python 3.x
- scipy
- sklearn
- numpy
- mxnet
- pickle
先使用miniconda根据上面的需求搭建一个环境
conda create -n MobileFaceNet_env python=3.8
conda activate MobileFaceNet_env
conda install -c conda-forge opencv
conda install scipy
conda install scikit-learn
conda install numpy
pip install tensorflow
pip install mxnet
然后使用下面的代码来验证上面的依赖项是否都安装成功
python -c "
import tensorflow as tf; print('TensorFlow:', tf.__version__)
import cv2; print('OpenCV:', cv2.__version__)
import scipy; print('SciPy:', scipy.__version__)
import sklearn; print('scikit-learn:', sklearn.__version__)
import numpy; print('NumPy:', numpy.__version__)
import mxnet; print('MXNet:', mxnet.__version__)
import pickle; print('pickle is available')
"
安装tensorflow时遇到错误:
ERROR: Failed building wheel for h5py
ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (h5py)
tensorflow中的h5py
需要HDF5库来编译 通过安装libhdf5-dev解决
sudo apt-get install libhdf5-dev
然后检验依赖项是否都安装成功时,到mxnet时遇到错误:
OSError: libarmpl_lp64_mp.so: cannot open shared object file: No such file or directory
通过安装libopenblas-base libopenblas-dev解决问题:
sudo apt install libopenblas-base libopenblas-dev
又遇到问题:
AttributeError: module 'numpy' has no attribute 'bool'.
`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
通过降低numpy版本解决问题:
pip install numpy==1.23.5
又遇到问题:
OSError: /home/cat/miniconda3/envs/mobileFaceNet_env/lib/python3.8/site-packages/mxnet/libgfortran.so.5: version `GFORTRAN_10' not found (required by /home/cat/miniconda3/envs/mobileFaceNet_env/bin/../lib/libarmpl_lp64_mp.so)
这个问题主要是mxnet内置了一个简易的libgfortran.so.5库,但是不支持GFORTRAN_10,需要另安装一个完整 的libgfortran5库,默认总是会优先使用mxnet内置的,所以还需要屏蔽掉mxnet内置的libgfortran.so.5,解决方法:
conda install -c conda-forge libgfortran5
cd $CONDA_PREFIX/lib/python3.8/site-packages/mxnet
mv libgfortran.so.5 libgfortran.so.5.bak
又遇到问题:
free(): invalid pointer
已放弃
这个问题是因为在同一个 Conda 环境中同时加载 TensorFlow、OpenCV、SciPy、scikit-learn、NumPy 和 MXNet 后,Python 进程退出时多次调用了不同版本运行时(glibc、 Fortran 运行时、ARMPL、CUDA 等)的 free()
,因而触发了“free(): invalid pointer
”的崩溃。根本在于内存分配器/运行时库版本不一致。解决方法是安装Google-perftools 提供的 tcmalloc会接管全局的 malloc()
/free()
,保证整个进程内使用同一分配器。解决方法:
sudo apt-get install libtcmalloc-minimal4
export LD_PRELOAD="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"
到此所有依赖检验通过,下一步clone mobileFaceNet库
git clone https://github.com/sirius-ai/MobileFaceNet_TF.git
运行MobileFaceNet中的程序时,遇到错误:
AttributeError: module 'tensorflow' has no attribute 'Session'
原因是安装了tensorflow v2,但mobileFaceNet使用的是tensorflow v1
解决方法是降级tensorflow的版本,但是在安装1.15版本的tensorflow时报错:
ERROR: Could not find a version that satisfies the requirement tensorflow==1.15 (from versions: 2.10.0rc0, 2.10.0rc1, 2.10.0rc2, 2.10.0rc3, 2.10.0, 2.10.1, 2.11.0rc0, 2.11.0rc1, 2.11.0rc2, 2.11.0, 2.11.1, 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.12.1, 2.13.0rc0, 2.13.0rc1, 2.13.0rc2, 2.13.0, 2.13.1)
ERROR: No matching distribution found for tensorflow==1.15
大概意思就是没有同时支持python3.8环境和aarch64架构的tensorflow 1.x版本,除非将python降到3.7,但是又懒得重新搭一遍conda环境了,最后使用tensorflow v2的兼容模式来解决这个问题
import tensorflow as tf
#将上面代码改成下面的
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
最后成功运行MobileFaceNet